Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Chemistry Chapter 3 Chemical Kinetics

ffImage

Class 12 Chemistry Chapter 3 NCERT Solutions - Chemical Kinetics FREE PDF Download

Chemical kinetics class 12 is the branch of chemistry concerned with the study of the rates of chemical reactions and the factors that influence them. Chemical Kinetics Class 12 NCERT Solutions helps students delve into the intricacies of chemical kinetics, exploring topics such as rate of reaction, factors affecting rate, and methods of determining reaction rates. Understanding chemical kinetics is crucial from industrial processes to environmental studies, as it provides insights into reaction mechanisms and enables the optimisation of reaction conditions. Chemical kinetics solutions equips students with essential knowledge to comprehend and analyse chemical reactions quantitatively.

toc-symbol
Table of Content
1. Class 12 Chemistry Chapter 3 NCERT Solutions - Chemical Kinetics FREE PDF Download
2. Quick Insights of Class 12  Chemical Kinetics NCERT solutions-
3. Mastering Class 12 Chemistry Chapter 3: Chemical Kinetics - Question and Answers
4. NCERT Exercise
5. Class 12 Chemistry Chapter 3 NCERT Solutions Quick Overview of Topics 
6. Class 12 Chemistry Chapter 3 NCERT Solutions Important Formulas
7. Benefits of Referring to Vedantu’s NCERT Solutions for Class 12 Chemistry
8. Important Links for Class 12 Chemistry Chapter 3 Chemical Kinetics
9. Conclusion:
10. NCERT Solutions Class 12 Chemistry | Chapter-wise Links 
11. NCERT Solutions Class 12 Chemistry - Related Links
FAQs


Check out the Revised Class 12 Chemistry Syllabus and get started with Vedantu!


Quick Insights of Class 12  Chemical Kinetics NCERT solutions-

  • NCERT Solutions for Class 12 Chemistry Chapter 3 will give you insights into the General Introduction: The chemical kinetics chapter will give you insight into the Rate of a reaction , factors affecting the rate of reaction.

  • The section will give you crisp learnings on  concentration, temperature, catalyst; order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half-life.

  • The understanding related to topics like the concept of collision theory, activation energy, Arrhenius equation.

  • Using these solutions can help students analyse their level of preparation and understanding of concepts.

  • Class 12 chemistry chemical kinetics NCERT solutions topics are included according to the revised syllabus for the academic year 2024-25.

  • It also provides resources such as class notes, important concepts, and formulas exemplar solutions.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Mastering Class 12 Chemistry Chapter 3: Chemical Kinetics - Question and Answers

1. For the reaction $\text{R}\to \text{P}$,  the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

Ans: The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below:

\[\text{Average rate = - }\frac{\text{ }\!\!\Delta\!\!\text{  }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{ }\!\!\Delta\!\!\text{ t}}\] 

This can be written as:

\[\text{Average rate = - }\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{2}}}\text{- }\!\![\!\!\text{ R}{{\text{ }\!\!]\!\!\text{ }}_{\text{1}}}}{{{\text{t}}_{\text{2}}}\text{-}{{\text{t}}_{\text{1}}}}\] 

\[{{\text{R}}_{\text{1}}}\text{ = 0}\text{.03 M}\] 

\[{{\text{R}}_{2}}\text{ = 0}\text{.02 M}\] 

\[{{\text{t}}_{\text{2}}}\text{ - }{{\text{t}}_{\text{1}}}\text{ = 25 min}\] 

Putting the values, we get:

\[\text{Average rate = - }\frac{0.02-0.03}{25}\] 

\[\text{Average rate = - }\frac{-0.01}{25}=4\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ M mi}{{\text{n}}^{-1}}\]

So, the average rate in minutes will be $4\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ M mi}{{\text{n}}^{-1}}$ 

Now, to find the average rate in seconds we have to divide the above answer by 60. So, the answer will be:

\[\text{Average rate = - }\frac{4\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ }}{60}=\text{ 6}\text{. 66  }\!\!\times\!\!\text{  1}{{\text{0}}^{-6}}\text{ M }{{\text{s}}^{-1}}\] 

Therefore, the average rate in seconds will be $6.66\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-6}}\text{ M }{{\text{s}}^{-1}}$


2. In a reaction, 2A $\to $ Products, the concentration of A decreases from $\text{0}\text{.5 mol }{{\text{L}}^{\text{-1}}}$ to $\text{0}\text{.4 mol }{{\text{L}}^{\text{-1}}}$ in 10 minutes. Calculate the rate during this interval.

Ans: The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below: 

\[\text{Average rate = - }\frac{1}{2}\frac{\text{ }\!\!\Delta\!\!\text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}{\text{ }\!\!\Delta\!\!\text{ t}}\] 

This is due the fact that the reaction given is:

2A $\to $ Products

So, the average rate will be written as:

\[\text{Average rate = - }\frac{1}{2}\frac{{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{\text{2}}}\text{- }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}_{\text{1}}}}{{{\text{t}}_{\text{2}}}\text{-}{{\text{t}}_{\text{1}}}}\] 

\[{{\text{A}}_{\text{1}}}\text{ = 0}\text{.5 M}\] 

\[{{\text{A}}_{2}}\text{ = 0}\text{.4 M}\] 

\[{{\text{t}}_{\text{2}}}\text{ - }{{\text{t}}_{\text{1}}}\text{ = 10 min}\] 

Putting the values, we get:

\[\text{Average rate = - }\frac{1}{2}\text{  }\!\!\times\!\!\text{  }\frac{0.4-0.5}{10}\] 

\[\text{Average rate = - }\frac{1}{2}\text{  }\!\!\times\!\!\text{  }\frac{-0.1}{10}=5\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ M mi}{{\text{n}}^{-1}}\]

So, the average rate will be $\text{5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ M mi}{{\text{n}}^{-1}}$


3. For a reaction, $\text{A + B }\to \text{ Product}$, the rate law is given by: $\text{r = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{1/2}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}$. What is the order of the reaction?

Ans: The order of the reaction can be calculated by adding the stoichiometry coefficients of the reactants in the given rate of the reaction.     

Given the rate is $\text{r = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{1/2}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}$ 

So, the order will be:

\[\text{Order = 2 + }\frac{\text{1}}{\text{2}}\text{ = 2}\text{.5}\] 

So, the order of the reaction is 2.5.


4. The conversion of the molecules X to Y follows second order kinetics. If concentration of x is increased to three times how will it affect the rate of formation of Y?

Ans: The reaction will be:

\[\text{X }\to \text{ Y}\] 

As the question says that this reaction follows the second order reaction, we can write the rate law equation as:

\[\text{Rate = k }\!\![\!\!\text{ X}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\text{ = k}{{\text{a}}^{\text{2}}}\]  

If [X] = a mol/ L

It is said that the concentration of X increases by three times, so we can write:

[X] = 3a mol/ L

Therefore, the rate of reaction will be:

\[\text{Rate = k (3a}{{\text{)}}^{\text{2}}}\text{ = 9 k}{{\text{a}}^{\text{2}}}\] 

Thus, the rate of the reaction will increase by 9 times or the rate formation will increase by 9 times.


5. A first order reaction has a rate constant $\text{1}\text{.15  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}$. How long will 5 g reactant take to reduce to 3 g?  

Ans: The initial amount of the reactant is given as 5 g. We can write:

\[{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}\text{ = 5 g}\]

The final amount of the reactant is given as 3 g. We can write:

[R] = 3 g

We are also given the value of rate constant as:

\[\text{Rate constant = 1}\text{.15  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

We know that the reaction is a 1st order reaction, the time can be calculated by:

\[\text{t = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

Putting the values in the above formula, we get:

\[\text{t = }\frac{\text{2}\text{.303}}{1.15\text{ x 1}{{\text{0}}^{-3}}}\text{ log}\frac{5}{3}\] 

\[\text{t = }\frac{\text{2}\text{.303}}{1.15\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}}\text{  }\!\!\times\!\!\text{  0}\text{.2219}\] 

t = 444 seconds

So, the time taken will be 444 seconds.


6. Time required to decompose $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ to half its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

Ans: We are given that the decomposition of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ is a first order reaction. So, we can write:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

It is mentioned that the time required for the initial amount to become half is 60 minutes.

\[{{\text{t}}_{\text{1/2}}}\text{ = 60 min}\]

Therefore, $\text{k = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}$ 

Putting the value, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{60 }\!\!\times\!\!\text{ 60}}\text{ = 1}\text{.925 }\!\!~\!\!\text{  }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ }{{\text{s}}^{\text{-1}}}\]

Thus, the rate constant is $\text{1}\text{.925 }\!\!~\!\!\text{  }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ }{{\text{s}}^{\text{-1}}}$.


7. What will be the effect of temperature on rate constant?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:

\[\text{k = A }{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/Rt}}}\] 

Where, A is the Arrhenius factor or the frequency factor,

T is the temperature,

R is the gas constant,

${{\text{E}}_{\text{a}}}$ is the activation energy.


8. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate ${{\text{E}}_{\text{a}}}$.

Ans: The formula that can be used to solve the question is:

\[\text{log}\frac{{{\text{k}}_{\text{1}}}}{{{\text{k}}_{\text{2}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left[ \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right]\] 

${{\text{T}}_{\text{1}}}$ temperature given is absolute temperature and it is equal to 298 K.

${{\text{T}}_{2}}$ = 298 + 10 = 308 K

It is given that the rate of the chemical reaction  double for an increase of 10 K, therefore, we can write the values of rate constant as:

\[{{\text{k}}_{\text{1}}}\text{ = x}\] 

\[{{\text{k}}_{\text{2}}}\text{ = 2x}\] 

Also, $\text{R = 8}\text{.314 J }{{\text{K}}^{\text{-1}}}\text{ mo}{{\text{l}}^{\text{-1}}}$ 

Now, putting all the values in the formula, we get:

\[\text{log}\frac{\text{2x}}{\text{x}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left[ \frac{\text{10}}{\text{298  }\!\!\times\!\!\text{  308}} \right]\] 

\[\text{log2 = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left[ \frac{\text{10}}{\text{298  }\!\!\times\!\!\text{  308}} \right]\] 

\[{{\text{E}}_{\text{a}}}\text{ = }\frac{2.303\text{  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  298  }\!\!\times\!\!\text{  308  }\!\!\times\!\!\text{  log 2}}{10}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52897}\text{.78  J mo}{{\text{l}}^{-1}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52}\text{.89 kJ mo}{{\text{l}}^{-1}}\]


9. The activation energy for the reaction $\text{2H}{{\text{I}}_{\text{(g)}}}\to {{\text{H}}_{\text{2}}}_{_{\text{(g)}}}\text{+}{{\text{I}}_{\text{2}}}_{_{\text{(g)}}}$ is $\text{209}\text{.5 kJ mo}{{\text{l}}^{\text{-1}}}$  at 581 K. Calculate the fraction of molecules of molecules having energy equal to or greater than activation energy.

Ans: We are given the activation energy as $\text{209}\text{.5 kJ mo}{{\text{l}}^{\text{-1}}}$

T = 581 K

\[\text{R = 8}\text{.314 J }{{\text{K}}^{\text{-1}}}\text{ mo}{{\text{l}}^{\text{-1}}}\]

Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as:

\[\text{x = }{{\text{e}}^{{{\text{E}}_{\text{a}}}\text{/RT}}}\] 

\[\text{ln x =}\frac{\text{-}{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

\[\text{log x =}\frac{\text{-}{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\] 

\[\text{log x =}\frac{209500}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  581}}\text{ }=\text{ }18.8323\]

Now, taking the antilog:

x = Antilog (18.8323)

\[\text{x = 1}\text{.471  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-19}}}\]


NCERT Exercise

1. From the rate expression for the following reactions, determine their order of reaction and the dimension of the rate constants.

(i). $\text{3 NO(g) }\to {{\text{N}}_{\text{2}}}\text{O(g)  Rate = k }\!\![\!\!\text{ NO}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}$ 

Ans: We are given:

\[\text{Rate = k }\!\![\!\!\text{ NO}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 

From this we can see that the order of the reaction = 2

\[\text{k = }\frac{\text{rate}}{{{\text{ }\!\![\!\!\text{ No }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{{{\text{(mol }{{\text{L}}^{\text{-1}}}\text{)}}^{\text{2}}}}\] 

\[\text{=}\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{mo}{{\text{l}}^{\text{2}}}\text{ }{{\text{L}}^{\text{2}}}}\] 

\[\text{= L mo}{{\text{l}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(ii).${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{(aq)+3}{{\text{I}}^{\text{-}}}\text{(aq)+2}{{\text{H}}^{\text{+}}}\to \text{2}{{\text{H}}_{\text{2}}}\text{O(l)+I}_{\text{3}}^{\text{-}}\text{  Rate=k }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{ }\!\!]\!\!\text{  }\!\![\!\!\text{ }{{\text{I}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }$  

Ans: Ans: \[Rate =k[{{H}_{2}}{{O}_{2}}][{{I}^{-}}]\] 

From this we can see that the order of the reaction = 2

\[k=\frac{rate}{[{{H}_{2}}{{O}_{2}}][{{I}^{-}}]}\]

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{{{\text{(mol }{{\text{L}}^{\text{-1}}}\text{)}}^{\text{2}}}}\] 

\[\text{=}\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{mo}{{\text{l}}^{\text{2}}}\text{ }{{\text{L}}^{\text{2}}}}\] 

\[\text{= L mo}{{\text{l}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(iii). $\text{C}{{\text{H}}_{\text{3}}}\text{CHO(g)}\to \text{C}{{\text{H}}_{\text{4}}}\text{(g)+ CO(g)  Rate = k }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{CHO}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}$ 

Ans: \[\text{Rate = k }\!\![\!\!\text{ C}{{\text{H}}_{3}}CHO{{]}^{3/2}}\] 

From this we can see that the order of the reaction = $\frac{3}{2}$ 

\[\text{k = }\frac{\text{rate}}{{{\text{ }\!\![\!\!\text{ C}{{\text{H}}_{3}}CHO]}^{\frac{3}{2}}}}\] 

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{{{\text{(mol }{{\text{L}}^{\text{-1}}}\text{)}}^{3/2}}}\] 

\[\text{=}\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{mo}{{\text{l}}^{\frac{3}{2}}}\text{ }{{\text{L}}^{\frac{3}{2}}}}\] 

\[\text{= }{{\text{L}}^{\frac{1}{2}}}\text{ mo}{{\text{l}}^{\text{-}\frac{1}{2}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(iv). ${{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{Cl(g)}\to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}\text{(g)+ HCl(g)  Rate = k }\!\![\!\!\text{ }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{Cl }\!\!]\!\!\text{ }$ 

Ans: \[\text{Rate = k }\!\![\!\!\text{ }{{\text{C}}_{2}}{{H}_{5}}Cl]\] 

From this we can see that the order of the reaction = 1

\[\text{k = }\frac{\text{rate}}{\text{ }\!\![\!\!\text{ }{{\text{C}}_{2}}{{H}_{5}}Cl]}\] 

Dimensions will be:

\[\text{k = }\frac{\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}}{\text{(mol }{{\text{L}}^{\text{-1}}})}\] 

\[\text{= }{{\text{s}}^{\text{-1}}}\]


2. For a reaction:

$\text{2A+B }\to \text{ }{{\text{A}}_{\text{2}}}\text{B}$ 

The $rate=k[A]{{[B]}^{2}}$ with $\text{k = 2}\text{.0 x 1}{{\text{0}}^{\text{-6}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ }{{\text{L}}^{\text{2}}}\text{ }{{\text{s}}^{\text{-1}}}$.

Calculate the initial rate of the reaction when $\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  = 0}\text{.1 mol }{{\text{L}}^{\text{-1}}}$, $\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{  = 0}\text{.2 mol }{{\text{L}}^{\text{-1}}}$. Calculate the rate of reaction after [A] is reduced to $\text{0}\text{.06 mol }{{\text{L}}^{\text{-1}}}$.

Ans: We are given the rate of the reaction as:

\[rate=k[A]{{[B]}^{2}}\]

Putting the values in this, we get the rate as:

\[\text{rate = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-6}}}\text{  }\!\!\times\!\!\text{  0}\text{.1  }\!\!\times\!\!\text{  (0}\text{.2}{{\text{)}}^{2}}\] 

\[\text{rate = 8}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-9}}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]  

When [A] is reduced from $0.10\text{ mol }{{\text{L}}^{-1}}$ to $0.06\text{ mol }{{\text{L}}^{-1}}$. So, the amount of [A] reacted will be:

\[=0.10-0.06=0.04\text{ mol }{{\text{L}}^{-1}}\]

Therefore, the concentration of B reacted will be:

\[=\frac{1}{2}\text{  }\!\!\times\!\!\text{  0}\text{.04 = 0}\text{.02 mol }{{\text{L}}^{-1}}\] 

Hence, new [B] = 0.2 – 0.02 = $0.18\text{ mol }{{\text{L}}^{-1}}$ 

Now, the new rate of the reaction will be:

\[\text{rate = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-6}}}\text{  }\!\!\times\!\!\text{  0}\text{.06  }\!\!\times\!\!\text{  (0}\text{.18}{{\text{)}}^{2}}\] 

\[\text{rate = 3}\text{.89  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-9}}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]  

Therefore, the rate of the reaction is $\text{3}\text{.89  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-9}}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}$.


3. The decomposition of $\text{N}{{\text{H}}_{\text{3}}}$ on the platinum surface is zero order reaction. What are the rates of production of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ if $\text{k = 2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}\text{ mo}{{\text{l}}^{\text{-1}}}\text{ L }{{\text{s}}^{\text{-1}}}$ ?

Ans: The following equation represents the breakdown of ammonia on the platinum surface.

\[\text{2N}{{\text{H}}_{{{\text{3}}_{\text{(g)}}}}}\xrightarrow{\text{Pt}}{{\text{N}}_{\text{2}}}_{_{\text{(g)}}}\text{+3}{{\text{H}}_{\text{2}}}_{_{\text{(g)}}}\] 

Therefore, we can write the rate of the reaction as:

\[\text{Rate = -}\frac{\text{1}}{\text{2}}\frac{\text{d }\!\![\!\!\text{ N}{{\text{H}}_{\text{3}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{d }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{1}}{\text{3}}\frac{\text{d }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\] 

But we are given that the reaction is a zero order reaction.

So, \[\text{Rate = -}\frac{\text{1}}{\text{2}}\frac{\text{d }\!\![\!\!\text{ N}{{\text{H}}_{\text{3}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{d }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = }\frac{\text{1}}{\text{3}}\frac{\text{d }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = 2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\] 

Thus, the rate of production of ${{\text{N}}_{\text{2}}}$ will be:

\[\text{ }\frac{\text{d }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = 2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]

And the rate of production of ${{\text{H}}_{\text{2}}}$ will be:

\[\frac{\text{d }\!\![\!\!\text{ }{{\text{H}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }}{\text{dt}}\text{ = 3  }\!\!\times\!\!\text{  2}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}=7.\text{5  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}\text{ mol }{{\text{L}}^{-1}}\text{ }{{\text{s}}^{-1}}\]


4. The decomposition of dimethyl ether leads to the formation of $\text{C}{{\text{H}}_{\text{4}}}$, ${{\text{H}}_{\text{2}}}$ and CO and the reaction rate is given by $\text{Rate = k  }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}$ 

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

$\text{Rate = k (}{{\text{P}}_{\text{C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}}}{{\text{)}}^{\text{3/2}}}$ 

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate   constants?

Ans: If the pressure is measured in bar and time in minutes, then unit of rate will be:

\[\text{= bar mi}{{\text{n}}^{\text{-1}}}\] 

We are given the rate of the reaction as: $\text{Rate = k  }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}$ 

Therefore, $\text{k = }\frac{\text{Rate}}{\text{  }\!\![\!\!\text{ C}{{\text{H}}_{\text{3}}}\text{OC}{{\text{H}}_{\text{3}}}{{\text{ }\!\!]\!\!\text{ }}^{\text{3/2}}}}$ 

So, we can write the units of rate constant as:

\[\text{k = }\frac{\text{bar mi}{{\text{n}}^{\text{-1}}}}{\text{ba}{{\text{r}}^{\text{3/2}}}}\text{ = ba}{{\text{r}}^{\text{-1/2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

So, the units are \[\text{ba}{{\text{r}}^{\text{-1/2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]


6. Mention the factors that affect the rate of a chemical reaction.

Ans: Factors that influence a reaction's speed include.

  • Reactant nature: The rate of reaction is affected by the kind of reactant. For example, ionic compound reactions are quicker than covalent compound reactions.

  • The state of the reactants: Solid reactions are sluggish, liquid reactions are rapid, and gas reactions are very quick.

  • Temperature: In addition, temperature has a significant impact on response rate. Every 10 degrees Celsius increase in temperature doubles the pace of reaction.

  • Presence of catalyst: The rate of reaction is also affected by the presence of a catalyst in the reaction. It enhances the pace of reaction by increasing reaction surface area, by generating unstable intermediates with the substrate, and by offering a lower activation energy alternative path.


7. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is:

(i). Doubled

Ans: Let us assume that the concentration of the reactant be [A] = a

Rate of the reaction will be:

\[\text{R = k }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\text{ = k}{{\text{a}}^{\text{2}}}\] 

It is said that the concentration of A increases by two times, so we can write:

[A] = 2a mol/ L

Therefore, the rate of reaction will be:

\[\text{Rate = k (2a}{{\text{)}}^{\text{2}}}\text{ = 4 k}{{\text{a}}^{\text{2}}}\] 

Thus, the rate of the reaction will increase by 4 times.


(ii). Reduced to half

It is said that the concentration of A reduced to half, so we can write:

[X] = $\frac{1}{2}$ a mol/ L

Therefore, the rate of reaction will be:

\[\text{Rate = k }{{\left[ \frac{1}{2}a \right]}^{2}}\text{ = }\frac{1}{4}\text{ k}{{\text{a}}^{\text{2}}}\] 

Thus, the rate of the reaction will reduce by ¼ times.


8. What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on rate constant be represented quantitatively?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:

\[\text{k = A }{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/Rt}}}\] 

Where, A is the Arrhenius factor or the frequency factor,

T is the temperature,

R is the gas constant,

${{\text{E}}_{\text{a}}}$ is the activation energy.

The formula can also be written as:

\[\text{log}\frac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left[ \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right]\] 

Where ${{\text{k}}_{\text{2}}}$is the rate constant at temperature \[{{\text{T}}_{\text{2}}}\] 

${{\text{k}}_{1}}$ is the rate constant at temperature ${{\text{T}}_{\text{1}}}$


9. In a pseudo first order hydrolysis of ester in water, the following results were obtained


t/s

0

30

60

90

$\text{ }\!\![\!\!\text{ Ester }\!\!]\!\!\text{ mol }{{\text{L}}^{\text{-1}}}$

0.55

0.31

0.17

0.085


(i). Calculate the average rate of reaction between the time interval 30 to 60 seconds.

Ans: Between the time interval of 30 to 60 sec the average rate of reaction will be calculated as:

\[\text{= }\frac{\text{d }\!\![\!\!\text{ Ester }\!\!]\!\!\text{ }}{\text{dt}}\] 

Putting the values from the data given in the question, we can write:

\[\text{= }\frac{0.31-0.17}{60-30}=\frac{0.14}{30}\] 

\[\text{= 4}\text{.67  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(ii). Calculate  the pseudo first order rate constant for the hydrolysis of ester.

Ans: The rate law formula for pseudo first order reaction will be:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\]

Now, when t = 30 s, then we rate constant will be:

\[{{\text{k}}_{1}}\text{ = }\frac{\text{2}\text{.303}}{30}\text{ log}\frac{0.55}{0.31}=1.91\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{s}}^{-1}}\] 

Now, when t = 60 s, then we rate constant will be:

\[{{\text{k}}_{2}}\text{ = }\frac{\text{2}\text{.303}}{60}\text{ log}\frac{0.55}{0.17}=1.96\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{s}}^{-1}}\]

Now, when t = 90 s, then we rate constant will be:

\[{{\text{k}}_{3}}\text{ = }\frac{\text{2}\text{.303}}{90}\text{ log}\frac{0.55}{0.085}=2.075\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{s}}^{-1}}\]

So, we can calculate the average rate constant as:

\[\text{k = }\frac{{{\text{k}}_{\text{1}}}\text{ + }{{\text{k}}_{\text{2}}}\text{ + }{{\text{k}}_{\text{3}}}}{\text{3}}\] 

\[\text{=1}\text{.98  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}\]


10. A reaction is first order in A and second order in B.

(i). Write the differential rate equation

Ans: The differential rate equation can be written as:

\[\text{-}\frac{\text{d }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{dt}}\text{ = k }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\]


(ii). How is the rate affected by increasing the concentration of B three times?

Ans: The concentration of B is increased by 3 times, then B =3B

Therefore, the rate will be:

 \[\text{-}\frac{\text{d }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{dt}}\text{ = k }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ 3B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}=9\text{ }\times \text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\]  

Therefore, the rate will increase by 9 times.


(iii). How is the rate affected when the concentration of both A and B are doubled?

Ans: The concentration of A is doubled, then A = 2A

The concentration of B is doubled, then B = 2B

Therefore, the rate will be:

\[\text{-}\frac{\text{d }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{\text{dt}}\text{ = k }\!\![\!\!\text{ 2A }\!\!]\!\!\text{  }\!\![\!\!\text{ 2B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}=8\text{ }\times \text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 

Therefore, the rate will increase by 8 times.


11. In a reaction between A and B the initial rate of reaction $\text{(}{{\text{r}}_{\text{0}}}\text{)}$ was measured for different concentrations of A and B as given below:


$\text{A/mol }{{\text{L}}^{\text{-1}}}$ 

0.20

0.20

0.04

$\text{B/mol }{{\text{L}}^{\text{-1}}}$ 

0.30

0.10

0.05

${{\text{r}}_{\text{0}}}\text{/mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}$ 

$\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}$ 

$\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}$

$\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}$ 


What is the order of the reaction with respect to A and B?

Ans: Let us assume that the order of the reaction with respect to A be x and with respect to B be y.

Therefore, we can write:

\[{{\text{r}}_{\text{0}}}\text{ = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\] 

\[\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.30}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(i)\] 

\[\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.10}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(ii)\] 

\[\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.40}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.05}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(iii)\]

Let us divide (i) by (ii), we get:

\[\frac{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}}{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.30}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.10}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\text{=1 = }\frac{{{\text{ }\!\![\!\!\text{ 0}\text{.30 }\!\!]\!\!\text{ }}^{\text{y}}}}{{{\text{ }\!\![\!\!\text{ 0}\text{.10 }\!\!]\!\!\text{ }}^{\text{y}}}}\] 

\[\text{= }{{\left( \frac{\text{0}\text{.30}}{\text{0}\text{.10}} \right)}^{\text{x}}}\text{ = }{{\left( \frac{\text{0}\text{.30}}{\text{0}\text{.10}} \right)}^{\text{y}}}\] 

Therefore, y = 0

Now, dividing (iii) by (i), we get:

\[\frac{\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}}{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.40}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.05}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.30}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\frac{\text{1}\text{.43  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}}{\text{5}\text{.07  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.40}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{ }}{\text{ k  }\!\![\!\!\text{ 0}\text{.20}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{ }}\] 

Because y = 0

\[\text{= 2}\text{.821 = }{{\text{2}}^{\text{x}}}\] 

Now, taking log on both sides.

log 2.821 = x log 2

\[\text{x = }\frac{\text{log 2}\text{.821}}{\text{log 2}}\] 

x = 1.496

x = 1.5

Thus, the order of the reaction according to A is 1.5 and according to B is 0.


12. The following results have been obtained during the kinetic studies of the reaction.

\[\text{2A + B}\to \text{ C + D}\]


Experiment

$\text{A/mol }{{\text{L}}^{\text{-1}}}$

$\text{B/mol }{{\text{L}}^{\text{-1}}}$

Initial rate of formation of $\text{D/mol }{{\text{L}}^{\text{-1}}}\text{mi}{{\text{n}}^{\text{-1}}}$ 

I

0.1

0.1

$\text{6}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

II

0.3

0.2

$\text{7}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

III

0.3

0.4

$\text{2}\text{.88  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-1}}}$ 

IV

0.4

0.1

$\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 


Determine the rate law and the rate constant for the reaction.

Ans: Let us assume that the order of the reaction with respect to A be x and with respect to B be y.

Therefore, we can write:

\[\text{Rate = k  }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\] 

\[\text{6}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(i)\] 

\[\text{7}\text{.2  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.2}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(ii)\] 

\[\text{2}\text{.88 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-1}}}\text{ = k }\!\!~\!\!\text{   }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{ }\!\!~\!\!\text{   }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{ }\!\!~\!\!\text{   }\!\!~\!\!\text{  }.........\text{(iii)}\]

\[\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ = k  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}\text{    }.........(iv) \] 

Let us divide (iv) by (i), we get:

\[\frac{\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}}{\text{6}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\text{=4 = }\frac{{{\text{ }\!\![\!\!\text{ 0}\text{.4 }\!\!]\!\!\text{ }}^{x}}}{{{\text{ }\!\![\!\!\text{ 0}\text{.1 }\!\!]\!\!\text{ }}^{x}}}\] 

\[\text{= 4 = }{{\left( \frac{\text{0}\text{.4}}{\text{0}\text{.1}} \right)}^{x}}\] 

Therefore, x = 1

Now, dividing (iii) by (ii), we get:

\[\frac{\text{2}\text{.88  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-1}}}}{\text{7}\text{.2  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }}\text{ = }\frac{\text{k  }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}{\text{ k  }\!\![\!\!\text{ 0}\text{.3}{{\text{ }\!\!]\!\!\text{ }}^{\text{x}}}\text{  }\!\![\!\!\text{ 0}\text{.2}{{\text{ }\!\!]\!\!\text{ }}^{\text{y}}}}\text{ }\] 

\[\text{= 4 = }{{\left( \frac{\text{0}\text{.4}}{\text{0}\text{.2}} \right)}^{y}}\] 

\[\text{= 4 = }{{\text{2}}^{\text{y}}}\] 

\[\text{= }{{\text{2}}^{2}}\text{ = }{{\text{2}}^{\text{y}}}\] 

y = 2

Thus, the order of the reaction according to A is 1 and according to B is 2.

So, the rate law is:

\[\text{Rate = k }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\] 

\[\text{k = }\frac{\text{Rate}}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  }\!\![\!\!\text{ B}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

Now, putting the values for each experiment, we get:

From experiment I:

\[\text{k = }\frac{6.0\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}}{\text{ }\!\![\!\!\text{ 0}\text{.1 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

From experiment II:

\[\text{k = }\frac{\text{7}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}}{\text{ }\!\![\!\!\text{ 0}\text{.3 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.2}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

From experiment III:

\[\text{k = }\frac{\text{2}\text{.88  }\!\!\times\!\!\text{  1}{{\text{0}}^{-1}}}{\text{ }\!\![\!\!\text{ 0}\text{.3 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.4}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\]

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\] 

From experiment IV:

\[\text{k = }\frac{\text{2}\text{.40  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}}{\text{ }\!\![\!\!\text{ 0}\text{.4 }\!\!]\!\!\text{  }\!\![\!\!\text{ 0}\text{.1}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}}\] 

\[\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}\]

Therefore, the rate constant will be k $\text{= 6}\text{.0 }{{\text{L}}^{\text{2}}}\text{ mo}{{\text{l}}^{\text{-2}}}\text{ mi}{{\text{n}}^{\text{-1}}}$


13. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:


Experiment

$\text{A/mol }{{\text{L}}^{\text{-1}}}$

$\text{B/mol }{{\text{L}}^{\text{-1}}}$

Initial rate $\text{D/mol }{{\text{L}}^{\text{-1}}}\text{mi}{{\text{n}}^{\text{-1}}}$ 

I

0.1

0.1

$\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

II

---

0.2

$\text{4}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$ 

III

0.4

0.4

----

IV

----

0.2

$\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}$


Ans: We are given that, the reaction between A and B is first order with respect to A and zero order with respect to B.

Therefore, the rate of the reaction is given by:

\[\text{Rate = k }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{1}}}{{\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }}^{\text{0}}}\] 

So, we can write:

\[\text{Rate = k }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\]

According to the experiment I we can write:

\[\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ = k(0}\text{.1)}\] 

\[\text{k = 0}\text{.2 mi}{{\text{n}}^{\text{-1}}}\] 

According to the experiment II we can write:

\[4.0\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}=(0.2)\text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\] 

\[\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  = 0}\text{.2 mol }{{\text{L}}^{\text{-1}}}\] 

According to the experiment III we can write:

\[\text{Rate = 0}\text{.2  }\!\!\times\!\!\text{  0}\text{.4}\]

\[\text{= 0}\text{.08 mol }{{\text{L}}^{\text{-1}}}\text{ mi}{{\text{n}}^{\text{-1}}}\] 

According to the experiment III we can write:

\[2.0\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}=(0.2)\text{  }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\] 

\[\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  = 0}\text{.1 mol }{{\text{L}}^{\text{-1}}}\]


14. Calculate the half-life of a first order reaction from their rate constants given below:

(i). $\text{200 }{{\text{s}}^{\text{-1}}}$ 

Ans: Half-life of the reaction can be related with the rate constant of the reaction as:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

Putting the value of time, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{200}}\text{ = 3}\text{.46  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ s}\] 

So, the rate of the reaction is $\text{3}\text{.46  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ s}$


(ii). $\text{2 mi}{{\text{n}}^{\text{-1}}}$ 

Ans: Half-life of the reaction can be related with the rate constant of the reaction as:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

Putting the value of time, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{2}}\text{ = 0}\text{.346 min}\] 

So, the rate of the reaction is 0.346 min.


(iii). $\text{4 year}{{\text{s}}^{\text{-1}}}$ 

Ans: Half-life of the reaction can be related with the rate constant of the reaction as:

\[{{\text{t}}_{\text{1/2}}}\text{ = }\frac{\text{0}\text{.693}}{\text{k}}\] 

Putting the value of time, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{4}\text{ = 0}\text{.173 years}\] 

So, the rate of the reaction is 0.173 years.


15. The half-life for radioactive decay of $^{\text{14}}\text{C}$ is 5730 years. An archeological artifact containing wood had only 80% of the $^{\text{14}}\text{C}$ found in a living tree. Estimate the age of the sample.

Ans: The given reaction in the above question is radioactive decay and the radioactive decay follows the first order kinetics. Therefore, the decay constant:

\[\text{ }\!\!\lambda\!\!\text{  = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}\] 

We are given a half-life of 5730 years. 

\[\text{ }\!\!\lambda\!\!\text{  = }\frac{\text{0}\text{.693}}{5730}\text{ year}{{\text{s}}^{-1}}\]  

To find the age of the sample, we can write:

\[\text{t = }\frac{\text{2}\text{.303}}{\text{ }\!\!\lambda\!\!\text{ }}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

80% of the wood is found so, the initial amount can be taken as 100 and the final amount as 80. Putting the values, we get:

\[\text{t = }\frac{\text{2}\text{.303}}{\frac{0.693}{5730}}\text{ log}\frac{100}{80}\] 

t = 1845 years

Therefore, the age of the sample is 1845 years.


16. The experiment data for decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$

\[\text{ }\!\![\!\!\text{ 2}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\to \text{4N}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\text{ }\!\!]\!\!\text{ }\] 

In gas phase at 318 K are given below:


t/s

0

400

800

1200

1600

2000

2400

1800

3200

$\text{1}{{\text{0}}^{\text{-2}}}\text{  }\!\!\times\!\!\text{   }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ /mol }{{\text{L}}^{\text{-1}}}$ 

1.63

1.36

1.14

0.93

0.78

0.64

0.53

0.43

0.35


(i). Plot [${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$] against t

Ans: The graph is given below:

The experiment data for decomposition


(ii). Find the half-life period for the reaction

Ans: Time corresponding to the concentration, 

$\frac{\text{1}\text{.630  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}}{\text{2}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{=0}\text{.815  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ mol }{{\text{L}}^{\text{-1}}}$  is the half-life.

From the graph, the half life obtained is 1440 s.


(iii). Draw the graph between $\text{log }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }$ and t

Ans: 

T(s)

$\text{1}{{\text{0}}^{\text{-2}}}\text{  }\!\!\times\!\!\text{   }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ /mol }{{\text{L}}^{\text{-1}}}$ 

$\text{log }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }$ 

0

1.63

-1.79

400

1.36

-1.87

800

1.14

-1.94

1200

0.93

-2.03

1600

0.78

-2.11

2000

0.64

-2.19

2400

0.53

-2.28

2800

0.43

-2.37

3200

0.35

-2.46


the rate law graph


(iv). What is the rate law?

Ans: The rate law of the reaction will be:

\[\text{Rate = k }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }\]


(v). Calculate the rate constant.

Ans: From the plot $\text{ }\!\![\!\!\text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\!\!]\!\!\text{ }$ v/s t, is given by:

\[\text{= -}\frac{\text{k}}{\text{2}\text{.303}}\] 

Therefore, we obtain:

\[\text{= -}\frac{\text{k}}{\text{2}\text{.303}}=\frac{0.67}{3200}\] 

\[\text{= 4}\text{.82  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\]


(vi). Calculate the half-life period from k and compare it will (ii)

Ans: Half-life is given by:

\[{{t}_{1/2}}=\frac{0.693}{k}=\frac{0.693}{4.82\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-4}}}s\]

= 1438 seconds.

The value of half-life calculated from the k is very close to that obtained from the graph.


16. The rate constant for a first order reaction is $\text{60 }{{\text{s}}^{\text{-1}}}$ . How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

Ans: As we know that:

\[\text{t = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

The initial value of the reactant has become 1/16th. Now, putting the values, we get:

\[\text{t = }\frac{\text{2}\text{.303}}{60}\text{ log}\frac{16}{1}\] 

\[\text{t = }\frac{\text{2}\text{.303}}{\text{60}}\text{ log16 = 4}\text{.62  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ s}\] 

Therefore, the time required will be $4.62\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ s}$.


17. During a nuclear explosion, one of the products is $^{\text{90}}\text{Sr}$ with a half-life of 28.1 years. If 1 $\text{ }\!\!\mu\!\!\text{ g}$ of $^{\text{90}}\text{Sr}$ was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically. 

Ans: As radioactive disintegration follows first order kinetics.

Decay constant of $^{\text{90}}\text{Sr}$ (k) = $\frac{0.693}{{{t}_{1/2}}}=\frac{0.693}{28.1}=2.466\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ }{{\text{y}}^{-1}}$ 

To calculate the amount left after 10 years.

\[\text{a = 1  }\!\!\mu\!\!\text{ g}\] 

$t = 10 years$

\[\text{k=2}\text{.466  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{y}}^{\text{-1}}}\] 

$(a-x) = ?$

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

\[\text{2}\text{.466  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{10}\text{ log}\frac{1}{\text{a-x}}\] 

\[\text{log(a-x) = -0}\text{.1071}\] 

(a-x) = Antilog -0.1071 = 0.7814 \[\text{ }\!\!\mu\!\!\text{ g}\]

To calculate the amount left after 60 years.

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

\[\text{2}\text{.466  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{60}\text{ log}\frac{1}{\text{a-x}}\] 

\[\text{log(a-x) = -0}\text{.6425}\]

(a-x) = Antilog -0.6425 = 0.2278 $\text{ }\!\!\mu\!\!\text{ g}$


18. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction. 

Ans: For first order reaction, we can write:

\[{{t}_{99\text{ % } \!\!\!\!\text{ }}}=\frac{2.303}{k}\log \frac{a}{a-x}\] 

99% completion means that x = 99% of a = 0.99 a

So, we can write:

\[{{t}_{99\text{ % } \!\!\!\!\text{ }}}=\frac{2.303}{k}\log \frac{a}{a-0.99a}\]

\[{{{t}}_{\text{99 % }\!\!\!\!\text{ }}}\text{ = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log 1}{{\text{0}}^{2}}\] 

\[{{t}_{\text{99%}\text{ }}}\text{ = 2}\times \frac{\text{2}\text{.303}}{\text{k}}\]

90% completion means that x = 90% of a = 0.90 a

\[{{t}_{99\text{ % } \!\!\!\!\text{ }}}=\frac{2.303}{k}\log \frac{a}{a-0.90a}\]

\[{{{t}}_{\text{99 % }\!\!\!\!\text{ }}}\text{ = }\frac{\text{2}\text{.303}}{\text{k}}\text{ log 1}{{\text{0}}^{}}\] 

\[{{t}_{\text{99%}\text{ }}}\text{ =}\frac{\text{2}\text{.303}}{\text{k}}\]

Now, we can take the ratio as given below:

\[\frac{{{t}_{99\text{%}\!\!\!\!\text{ }}}}{{{t}_{90\text{%}\!\!\!\!\text{ }}}}=\frac{\left( \frac{2\text{ x 2}\text{.303}}{k} \right)}{\left( \frac{2.303}{k} \right)}\] 

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.


19. A first order reaction takes 40 min for 30% decomposition. Calculate ${{\text{t}}_{\text{1/2}}}$.

Ans: 30% decomposition means that x = 30% of a = 0.30 a

Since, the reaction is of 1st order, we can write:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

Time is given as 40 min. So, putting the values, we get:

\[\text{k = }\frac{\text{2}\text{.303}}{40}\text{ log}\frac{\text{a}}{\text{a-0}\text{.30a}}\] 

\[\text{k = }\frac{\text{2}\text{.303}}{40}\text{ log}\frac{10}{7}{{\min }^{-1}}\] 

\[\text{k = }\frac{\text{2}\text{.303}}{40}\text{  }\!\!\times\!\!\text{  0}\text{.1549 mi}{{\text{n}}^{-1}}=8.918\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}{{\min }^{-1}}\]  

Now, we can calculate the half-life period as we have the rate constant value.

We can write:

\[{{t}_{1/2}}=\frac{0.693}{k}=\frac{0.693}{8.918\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}}=7.77\text{ }\min \]

So, the half-life is 7.77 min.


20. For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained:


T (sec)

P (mm of Hg)

0

35.0

360

54.0

720

63.0


Calculate the rate constant.

Ans:  The decomposition of azoisopropane to hexane and nitrogen at 54.3 k is represented by the following equation.

The decomposition of azoisopropane to hexane and nitrogen at 54.3 k


Total pressure after time t, we will be:

\[{{\text{P}}_{\text{t}}}\text{ = (}{{\text{P}}_{\text{o}}}\text{-p) + p + p}\] 

\[{{\text{P}}_{\text{t}}}\text{=}{{\text{P}}_{\text{o}}}\text{+p}\] 

\[\text{p=}{{\text{P}}_{\text{t}}}-{{\text{P}}_{\text{o}}}\] 

Now, we can substitute the value of p for the pressure of reactant at time t

\[\text{=}{{\text{P}}_{\text{o}}}\text{-p}\] 

\[\text{=}{{\text{P}}_{\text{o}}}\text{-(}{{\text{P}}_{\text{t}}}\text{-}{{\text{P}}_{\text{o}}}\text{)}\]

\[\text{= 2}{{\text{P}}_{\text{o}}}\text{ - }{{\text{P}}_{\text{t}}}\] 

Now, we can apply the rate constant formula of 1st order reaction.

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{P}}{\text{2}{{\text{P}}_{\text{o}}}\text{-}{{\text{P}}_{\text{t}}}}\] 

When t = 360 s,

Putting the values, we get:

\[\text{k = }\frac{\text{2}\text{.303}}{360}\text{ log}\frac{35.0}{\text{2  }\!\!\times\!\!\text{  35 - 54}}=2.175\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{-1}}\]  

When t = 720 s,

Putting the values, we get:

\[\text{k = }\frac{\text{2}\text{.303}}{720}\text{ log}\frac{35.0}{\text{2  }\!\!\times\!\!\text{  35 - 63}}=2.235\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{-1}}\]

Now, we can find the average value:

\[\text{k = }\frac{\text{(2}\text{.175  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{)+(2}\text{.235  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{)}}{\text{2}}\text{ }{{\text{s}}^{\text{-1}}}\] 

\[\text{k = 2}\text{.20  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}\]


21. The following data were obtained during the first order thermal decomposition of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ at a constant volume.

\[\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{{{\text{2}}_{\text{(g)}}}}}\to \text{S}{{\text{O}}_{{{\text{2}}_{\text{(g)}}}}}\text{+C}{{\text{l}}_{{{\text{2}}_{\text{(g)}}}}}\]


Experiment

Time/ s

Total pressure/ atm

1

0

0.5

2

100

0.6


Calculate the rate of the reaction when total pressure is 0.65 atm.

Ans: The given reaction shows the thermal decomposition of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ at constant volume.

the thermal decomposition


Total pressure after time t, we will be:

\[{{\text{P}}_{\text{t}}}\text{ = (}{{\text{P}}_{\text{o}}}\text{-p) + p + p}\] 

\[{{\text{P}}_{\text{t}}}\text{=}{{\text{P}}_{\text{o}}}\text{+p}\] 

\[\text{p=}{{\text{P}}_{\text{t}}}-{{\text{P}}_{\text{o}}}\] 

Now, we can substitute the value of p for the pressure of reactant at time t

\[\text{=}{{\text{P}}_{\text{o}}}\text{-p}\] 

\[\text{=}{{\text{P}}_{\text{o}}}\text{-(}{{\text{P}}_{\text{t}}}\text{-}{{\text{P}}_{\text{o}}}\text{)}\]

\[\text{= 2}{{\text{P}}_{\text{o}}}\text{ - }{{\text{P}}_{\text{t}}}\] 

Now, we can apply the rate constant formula of 1st order reaction.

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{P}}{\text{2}{{\text{P}}_{\text{o}}}\text{-}{{\text{P}}_{\text{t}}}}\] 

When the t = 100 s

\[\text{k = }\frac{\text{2}\text{.303}}{100}\text{ log}\frac{0.5}{\text{2  }\!\!\times\!\!\text{  0}\text{.5 - 0}\text{.6}}\] 

\[\text{k = 2}\text{.231  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

When ${{\text{P}}_{\text{t}}}$ = 0.65 atm 

Therefore, pressure of $\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ at time t total pressure is 0.65 atm, is

${{\text{P}}_{\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}\text{=2}{{\text{P}}_{\text{o}}}\text{-}{{\text{P}}_{\text{t}}}$ 

= 2 $\text{ }\!\!\times\!\!\text{ }$ 0.50 – 0.65

= 0.35 atm

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by:

\[\text{Rate = k(}{{\text{P}}_{\text{S}{{\text{O}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}\text{)}\] 

\[\text{Rate = (2}\text{.33 x 1}{{\text{0}}^{\text{-3}}}\text{)(0}\text{.354) = 7}\text{.8  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-4}}}\text{atm }{{\text{s}}^{\text{-1}}}\]


22. The rate constant for the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$ at various temperature is given below:


$\text{T}{{\text{/}}^{\text{o}}}\text{c}$ 

0

20

40

60

80

$\text{1}{{\text{0}}^{\text{5}}}\text{  }\!\!\times\!\!\text{  k/s}$ 

0.0787

1.70

25.7

178

2140


Draw a graph between ln K and 1/T and calculate the values of A and ${{\text{E}}_{\text{a}}}$. Predict the rate constant at $\text{3}{{\text{0}}^{\text{o}}}$ and $\text{5}{{\text{0}}^{\text{o}}}$C.

Ans: As the data is given we can write:


$\text{T}{{\text{/}}^{\text{o}}}\text{c}$ 

0

20

40

60

80

T/K

273

293

313

333

353

$\frac{\text{1}}{\text{T}}\text{/}{{\text{k}}^{\text{-1}}}$ 

$\text{3}\text{.66  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{3}\text{.41  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{3}\text{.19  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{3}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{2}\text{.83  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}$ 

$\text{1}{{\text{0}}^{\text{5}}}\text{  }\!\!\times\!\!\text{  k/s}$ 

0.0787

4.075

25.7

178

2140

ln K

-7.147

-4.075

-1.359

-0.577

3.063



a graph between ln K and 1/T


Slope of the line, will be given as:

\[\frac{{{\text{y}}_{\text{2}}}\text{-}{{\text{y}}_{\text{1}}}}{{{\text{x}}_{\text{2}}}\text{-}{{\text{x}}_{\text{1}}}}\text{ = 12}\text{.301 K}\] 

According to the Arrhenius equation,

\[\text{Slope = -}\frac{{{\text{E}}_{\text{a}}}}{\text{R}}\] 

\[\text{= }{{\text{E}}_{\text{a}}}\text{= -slope  }\!\!\times\!\!\text{  R}\]

= (-12.301) (8.314)

\[\text{=102}\text{.27 KJ mo}{{\text{l}}^{\text{-1}}}\] 

Again,

\[\text{ln k = ln A - }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

\[\text{ln A = ln k + }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

As T = 273 K and ln k = -7.147

Applying this in the formula, we get:

\[\text{ln A = -7}\text{.147 - }\frac{102.27\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}}{8.314\text{  }\!\!\times\!\!\text{  273}}=37.911\] 

So, \[\text{A=2}\text{.91  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{6}}}\]

When T = 30 + 273 K = 303 K

\[\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0033K = 3}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}\] 

Now, at $\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0033K = 3}\text{.3  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}$

ln k = - 2.8

Therefore, $\text{k = 6}\text{.08  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$  

When T = 50 + 273 K = 323 K

\[\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0031K = 3}\text{.1  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}\] 

Now, at $\frac{\text{1}}{\text{T}}\text{ = 0}\text{.0031K = 3}\text{.1  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{K}$

ln k = - 0.5

Therefore, $\text{k = 0}\text{.607 }{{\text{s}}^{\text{-1}}}$


23. The rate constant for the decomposition of hydrocarbons is $\text{2}\text{.418  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }{{\text{s}}^{\text{-1}}}$ at 546 K. If the energy of activation is 179.9 kJ /mol, what will be the value of pre-exponential factor.

Ans: We are given some values as:

\[\text{K = 2}\text{.418  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }{{\text{s}}^{\text{-1}}}\]   

\[T = 546 K\]

\[{{\text{E}}_{\text{a}}}\text{ = 179}\text{.9 kJ mo}{{\text{l}}^{\text{-1}}}=179.9\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}\text{ J mo}{{\text{l}}^{-1}}\] 

We the Arrhenius equation is:

\[\text{k = A }{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/RT}}}\] 

In the log form, this can be written as:

\[\text{ln k = ln A - }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

\[\text{log k = log A - }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\] 

\[\text{log k = log (2}\text{.418  }\!\!\times\!\!\text{  1}{{\text{0}}^{-5}}\text{) - }\frac{179.9\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}}{\text{2}\text{.303 }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  546}}\] 

= (0.3835 – 5) + 17.2082 = 12.5917

Therefore, A = antilog (12.5917)

\[\text{A = 3}\text{.912  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{12}}}\text{ }{{\text{s}}^{\text{-1}}}\]


24. Consider a certain reaction $\text{A }\to \text{ Products}$ with $\text{k = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$. Calculate the concentration of A remaining after 100s if the initial concentration of A is $\text{1}\text{.0 mol }{{\text{L}}^{\text{-1}}}$.

Ans: We are given some values, that are given below:

\[\text{k = 2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

\[t = 100 s\]

\[{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{\text{o}}}\text{=1}\text{.0 mol }{{\text{L}}^{\text{-1}}}\] 

As we can see that the units of k are given in ${{\text{s}}^{\text{-1}}}$, this means that the reaction is a first order reaction.

Therefore, we can write:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}\] 

Putting the values, we get:

\[\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{100}\text{ log}\frac{1.0}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}\] 

\[\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{ = }\frac{\text{2}\text{.303}}{100}\text{ (-log }\!\![\!\!\text{ A }\!\!]\!\!\text{ )}\] 

\[\text{(-log }\!\![\!\!\text{ A }\!\!]\!\!\text{ ) = }\frac{\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{  }\!\!\times\!\!\text{  100}}{2.303}\] 

\[\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{  =antilog }\left( \frac{\text{2}\text{.0  }\!\!\times\!\!\text{  1}{{\text{0}}^{-2}}\text{  }\!\!\times\!\!\text{  100}}{2.303} \right)\] 

\[=0.135\text{ mol }{{\text{L}}^{-1}}\] 

Therefore, the remaining amount of A is $0.135\text{ mol }{{\text{L}}^{-1}}$.


25. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law with${{\text{t}}_{\text{1/2}}}\text{ = 3}\text{.00 hours}$. What fraction of a sample of sucrose remains after 8 hours?

Ans: The given reaction is a first order reaction. So, we can write:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

It is given that the half-life is 3 hours. Therefore, we can write:

\[\text{k = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}\] 

So, putting the values in this, we get:

\[\text{k = }\frac{\text{0}\text{.693}}{\text{3}}\text{ = 0}\text{.231 }{{\text{h}}^{\text{-1}}}\] 

Now, we can put this value of rate constant in the first order reaction formula.

\[\text{0}\text{.231 = }\frac{\text{2}\text{.303}}{8}\text{ log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\] 

\[\text{log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = }\frac{\text{0}\text{.231  }\!\!\times\!\!\text{  8}}{2.303}\text{ }\] 

\[\text{log}\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = 0}\text{.8024}\] 

\[\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = antilog (0}\text{.8024)}\] 

\[\frac{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{\text{0}}}}{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}\text{ = 6}\text{.3445}\] 

Or we can write:

\[\frac{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}{{{\text{ }\!\![\!\!\text{ R }\!\!]\!\!\text{ }}_{0}}}\text{ = 0}\text{.158}\] 

Therefore, the fraction of sample of sucrose that remains after 8 hours is 0.158.


26. The decomposition of hydrocarbon follows the equation $\text{k = (4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{11}}}\text{ }{{\text{s}}^{\text{-1}}}\text{)}{{\text{e}}^{\text{-280000K/T}}}$. Calculate ${{\text{E}}_{\text{a}}}$.

Ans: According to the Arrhenius equation,

\[\text{k = A}{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/RT}}}\]   

We are given the equation as:

\[\text{k = (4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{11}}}\text{ }{{\text{s}}^{\text{-1}}}\text{)}{{\text{e}}^{\text{-280000K/T}}}\] 

Therefore, the formula can be written as:

\[\text{-}\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\text{ = -}\frac{\text{28000 K}}{\text{T}}\] 

This can be written as:--------

\[{{\text{E}}_{\text{a}}}\text{ = 28000  }\!\!\times\!\!\text{  R}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 28000  }\!\!\times\!\!\text{  8}\text{.314 = 232}\text{.79 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Therefore, the value of ${{\text{E}}_{\text{a}}}$ is $\text{232}\text{.79 kJ mo}{{\text{l}}^{\text{-1}}}$


27. The rate constant for the first order decomposition of ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ is given by the following equation: 

$\text{log k = 14}\text{.34 - 1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K/T}$ 

Calculate ${{\text{E}}_{\text{a}}}$ for this reaction and at what temperature will its half-period be 256 minutes?    

Ans: According to the Arrhenius equation,

\[\text{k = A}{{\text{e}}^{\text{-}{{\text{E}}_{\text{a}}}\text{/RT}}}\]

This can be written as:

\[\text{ln k = ln A - }\frac{{{\text{E}}_{\text{a}}}}{\text{RT}}\] 

In the log form it can be written as:

\[\text{log k = log A - }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\] 

We are given:

\[\text{log k = 14}\text{.34 - 1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K/T}\] 

Comparing these two, we get:

\[\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303 RT}}\text{ = }\frac{\text{1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K}}{\text{T}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 2}\text{.303 R  }\!\!\times\!\!\text{  1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ K}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 239}\text{.34 kJ mo}{{\text{l}}^{-1}}\] 

We are given a half-life of 256 minutes.

\[\text{k = }\frac{\text{0}\text{.693}}{{{\text{t}}_{\text{1/2}}}}\] 

\[\text{k = }\frac{\text{0}\text{.693}}{\text{256  }\!\!\times\!\!\text{  60}}\text{ = 4}\text{.51  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{ }{{\text{s}}^{\text{-1}}}\] 

Now, we have the value of rate constant, we can put in the equation:

\[\text{log(4}\text{.51  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-5}}}\text{) = 14}\text{.34 - }\frac{\text{1}\text{.25  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}}{\text{T}}\] 

T = 669 K


28. The decomposition of A into product has value of k as $\text{4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{3}}}\text{ }{{\text{s}}^{\text{-1}}}$  at $\text{1}{{\text{0}}^{\text{o}}}\text{C}$ and energy of activation $\text{60 kJ mo}{{\text{l}}^{\text{-1}}}$. At what temperature would k be $\text{1}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{4}}}\text{ }{{\text{s}}^{\text{-1}}}$?

Ans: We are some information:

\[{{\text{k}}_{\text{1}}}\text{ = 4}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{3}}}\] 

\[{{\text{T}}_{\text{1}}}\text{ = 10 + 273 = 283 K}\] 

\[{{\text{k}}_{2}}\text{ = 1}\text{.5  }\!\!\times\!\!\text{  1}{{\text{0}}^{4}}\] 

\[{{\text{T}}_{\text{2}}}=?\] 

\[{{\text{E}}_{\text{a}}}\text{ = 60 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Applying Arrhenius equation:

\[\text{log}\frac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right)\] 

Putting the values, we can write:

\[\text{log}\frac{1.5\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{4}}}{4.5\text{  }\!\!\times\!\!\text{  1}{{\text{0}}^{3}}}\text{ = }\frac{60}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-283}}{\text{283}{{\text{T}}_{\text{2}}}} \right)\] 

\[\text{log 3}\text{.333 = 3133}\text{.63}\left( \frac{{{\text{T}}_{\text{2}}}\text{-283}}{\text{283}{{\text{T}}_{\text{2}}}} \right)\] 

\[\frac{0.5228}{3133.63}=\left( \frac{{{\text{T}}_{\text{2}}}\text{-283}}{\text{283}{{\text{T}}_{\text{2}}}} \right)\] 

\[\text{0}\text{.0472}{{\text{T}}_{\text{2}}}\text{ = }{{\text{T}}_{\text{2}}}\text{ - 283}\] 

\[{{\text{T}}_{\text{2}}}\text{ = 297 K }\] 

Or we can write:

\[{{\text{T}}_{\text{2}}}\text{ = 2}{{\text{4}}^{\text{o}}}\text{C}\]


29. The time required for 10% completion of a first order reaction at 298 k is equal to that required for its 25% completion at 308 K. If the value of A is $\text{4  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{10}}}\text{ }{{\text{s}}^{\text{-1}}}$ , Calculate k at 318 K and ${{\text{E}}_{\text{a}}}$.

Ans: There are two cases in this question. As the reaction given is first order reaction, we can use:

\[\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log}\frac{\text{a}}{\text{a-x}}\] 

For case 1:

\[{{\text{k}}_{\text{298K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{\text{1}}}}\text{ log}\frac{\text{a}}{\text{a - 0}\text{.10a}}\] 

\[{{\text{k}}_{\text{298K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{\text{1}}}}\text{ log}\frac{10}{9}\] 

\[{{\text{k}}_{\text{298K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{\text{1}}}}\text{  }\!\!\times\!\!\text{  0}\text{.0458}\] 

\[{{\text{t}}_{\text{1}}}\text{ = }\frac{\text{0}\text{.1055}}{{{\text{k}}_{\text{298K}}}}\] 

For case 2:

\[{{\text{k}}_{\text{308K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{2}}}\text{ log}\frac{\text{a}}{\text{a - 0}\text{.25a}}\] 

\[{{\text{k}}_{\text{308K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{2}}}\text{ log}\frac{4}{3}\] 

\[{{\text{k}}_{\text{308K}}}\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{2}}}\text{  }\!\!\times\!\!\text{  0}\text{.125}\] 

\[{{\text{t}}_{2}}\text{ = }\frac{\text{0}\text{.2879}}{{{\text{k}}_{\text{308K}}}}\]

But ${{\text{t}}_{\text{1}}}\text{ = }{{\text{t}}_{\text{2}}}$ 

Hence,

\[\frac{\text{0}\text{.1055}}{{{\text{k}}_{\text{298K}}}}\text{ = }\frac{\text{0}\text{.2879}}{{{\text{k}}_{\text{308K}}}}\] 

\[\frac{{{\text{k}}_{\text{308K}}}}{{{\text{k}}_{\text{298K}}}}\text{ = 2}\text{.7289}\]  

Now, applying the Arrhenius equation,

\[\text{log}\frac{{{\text{k}}_{\text{308K}}}}{{{\text{k}}_{\text{298K}}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right)\] 

\[\text{log(2}\text{.7289) = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{\text{308-298}}{298\text{  }\!\!\times\!\!\text{  308}} \right)\] 

\[{{\text{E}}_{\text{a}}}\text{ = 76}\text{.623 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Now, the calculation of k at 318 K

\[\text{log k = log A - }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303RT}}\]

\[\text{log k = log (4  }\!\!\times\!\!\text{  1}{{\text{0}}^{10}}\text{) - }\frac{7623}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  318}}\] 

\[\text{log k = 10}\text{.6021 - 12}\text{.5843 = -1}\text{.9822}\] 

k = Antilog (-1.9822) = $\text{antilog (\bar{2}}\text{.0178) = 1}\text{.042  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$ 

Therefore, k is $\text{1}\text{.042  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-2}}}\text{ }{{\text{s}}^{\text{-1}}}$.


30. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Ans: We are given that:

\[{{\text{k}}_{\text{2}}}\text{ = 4 }{{\text{k}}_{\text{1}}}\] 

\[{{\text{T}}_{\text{1}}}\text{ = 293K}\]

\[{{\text{T}}_{2}}\text{ = 313K}\]  

According the Arrhenius equation, we get:

\[\text{log}\frac{{{\text{k}}_{2}}}{{{\text{k}}_{1}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303R}}\left( \frac{{{\text{T}}_{\text{2}}}\text{-}{{\text{T}}_{\text{1}}}}{{{\text{T}}_{\text{1}}}{{\text{T}}_{\text{2}}}} \right)\] 

Putting the values, we get:

\[\text{log}\frac{\text{4}{{\text{k}}_{1}}}{{{\text{k}}_{1}}}\text{ = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{\text{313-293}}{293\text{  }\!\!\times\!\!\text{  313}} \right)\] 

\[\text{0}\text{.6021 = }\frac{{{\text{E}}_{\text{a}}}}{\text{2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314}}\left( \frac{\text{313-293}}{293\text{  }\!\!\times\!\!\text{  313}} \right)\] 

\[{{\text{E}}_{\text{a}}}\text{=}\frac{\text{0}\text{.6021  }\!\!\times\!\!\text{  2}\text{.303  }\!\!\times\!\!\text{  8}\text{.314  }\!\!\times\!\!\text{  293  }\!\!\times\!\!\text{  313}}{\text{20}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52863}\text{.00 J mo}{{\text{l}}^{\text{-1}}}\] 

\[{{\text{E}}_{\text{a}}}\text{ = 52}\text{.863 kJ mo}{{\text{l}}^{\text{-1}}}\] 

Therefore, the required activation energy is $\text{52}\text{.863 kJ mo}{{\text{l}}^{\text{-1}}}$.


Class 12 Chemistry Chapter 3 NCERT Solutions Quick Overview of Topics 

Class 12 Chemistry Chapter 3 NCERT Solutions - Quick Overview of Detailed Structure of Topics and Subtopics Covered.


Topic

Subtopics

Introduction to Chemical Kinetics

Definition and importance

Rate of a Chemical Reaction

Average and instantaneous rate

Factors Influencing Rate of Reaction

Concentration, temperature, pressure, catalysts

Integrated Rate Equations

First-order, second-order, and zero-order reactions,Pseudo First Order Reaction

Half-life of a Reaction

Definition and determination

Collision Theory

Concept and factors affecting reaction rate

Activation Energy and Arrhenius Equation

Activation energy, Arrhenius equation

Temperature Dependence of Reaction Rate

Effect of temperature on rate

Catalysis

Homogeneous and heterogeneous catalysis

Enzyme Catalysis

Introduction to enzymatic reactions


Class 12 Chemistry Chapter 3 NCERT Solutions Important Formulas

Class 12 NCERT solutions help the students to go through the formulas easily. Here find the Important formulas of Chapter 3- Chemical Kinetics to crack your exams.


  1. Integrated rate law equation for zero order reaction

\[ k = \frac{[R]_o[R]}{t} \]

Where k is the rate constant and [R] is the initial molar concentration.

  1. \[ t_{1/2} = \frac{[R]_o}{2k} \]

t1/2 is the half-life period of zero-order reaction.

  1. Integrated rate law equation for first order reaction

k = 2.303/k log [R]/[R]

Where k is the rate constant, [R] is the initial molar concentration, and [R] is the final concentration at a time 't'.

  1. Half-life period (t1/2) for the first-order reaction:

t1/2 = 0.693/k

  1. Arrhenius equation

k=Ae-Ea/RT

Where 'A' is the frequency factor, Ea is the energy of activation, R is the universal gas constant and T is the absolute temperature.


Benefits of Referring to Vedantu’s NCERT Solutions for Class 12 Chemistry

The Vedantu’s Class 12 NCERT Solutions of Chemistry provided here in PDFs offer various benefits, including:


  • The answers provided here are straightforward.

  • It provides the Concise Notes and saves a lot of time for Revision.

  • To facilitate comprehension, solutions are presented in phases.

  • All of the questions from each chapter are answered.

  • For effective preparations, comprehend all of the processes outlined in the answers.


Important Links for Class 12 Chemistry Chapter 3 Chemical Kinetics

Students can access extra study materials on Chemical Kinetics , These resources are available for download, offering additional support for your studies.

S.No

Related Links for Class 12 Chemistry Chapter 3: Chemical Kinetics

1.

Chemical Kinetics Important Questions

2.

Chemical Kinetics Revision Notes

3.

Chemical Kinetics NCERT Exemplar Solutions



Conclusion:

Vedantu's Class 12 Chemistry Chemical Kinetics NCERT Solutions offer a comprehensive and valuable resource for students studying this subject. The solutions provided are well-structured, easy to understand, and cover all the important topics and concepts outlined in the NCERT textbook. The explanations are concise yet thorough, ensuring that students grasp the underlying principles of chemical kinetics effectively. Additionally, Vedantu's solutions provide ample practice exercises and examples to reinforce learning and help students develop problem-solving skills. Overall, Vedantu's Class 12 Chemistry Chemical Kinetics NCERT Solutions serve as a reliable companion for students, enabling them to enhance their understanding and performance in this critical area of study.


NCERT Solutions Class 12 Chemistry | Chapter-wise Links 

Access Vedantu’s chapter-wise NCERT Chemistry Class 12 Solutions PDFs below for all other chapters.




NCERT Solutions Class 12 Chemistry - Related Links

FAQs on NCERT Solutions for Class 12 Chemistry Chapter 3 Chemical Kinetics

1. How to Score Good Grades in Chemistry Chapter 4?

A candidate must prepare a study schedule and allot time for each chapter. Students need to solve various chemical equations to sharpen their problem-solving skill. They need to understand the theories and must know where to apply the formulas. Solving mock test papers and previous year questions will also help in preparation.


Students can also prepare for the board exam by sitting for an online exam on different websites, and by tallying their answer papers with correct answers. These portals provide affordable facilities like test evaluation, suggestion and marks fetching solutions.

2. What is Chemical Kinetics?

Chemical kinetics is the branch of Physical Chemistry that is related to understanding the rates of chemical reactions. It is related to thermodynamics that deals with the process of time and movement. Moreover, it includes studying experimental conditions regarding the speed of chemical reaction and its mechanism.


The reaction rate differs depending upon the reacting substances. The formation of ion exchange, Acid and base reactions, and salts are usually fast reactions. Furthermore, the covalent bond formation takes place between the molecules, and the reactions tend to get slower when large molecules are formed. The rate of transformation into products is greatly influenced by nature and strength of bonds in reactant molecules.

3. What are the Sub-Topics in Chemical Kinetic?

The chemical kinetic chapter of Class 12 is vital as well as the scoring chapter. It contains a wide range of sub-topics which give detailed knowledge on the nature and mechanism of this branch of physical Chemistry. The sub-topics include - 

  • Rate of chemical reaction.

  • Dependence on the rate of concentration.

  • Integrated rate equations.

  • Molecularity and mechanism.

  • Temperature dependence.

  • Effect of catalyst.

  • Collision theory of chemical reaction.

  • Important formulas.

Apart from these topics, formulas like rate law, integrated rate law, units of the rate constant, linear plot to determine constant and half-line for zero, first, second and all order is also given.

4. Where can I get the Chemical kinetics class 12 NCERT solutions for Chemistry Chapter 3?

Chemical kinetics solutions Chapter 3 in Class 12 Chemistry Students who find difficulty in answering any questions provided in the NCERT can take the help of NCERT Solutions for Class 12 Chemistry available on Vedantu. These solutions can be found on the page Chemical Kinetics NCERT Solutions. The solutions have been carefully designed by experts to provide students with solutions that will help enhance their understanding of various concepts taught in this chapter. Students can also download the Vedantu app to access these solutions for free.

5. What are the most important topics covered in Class 12 Chemistry Chapter 4?

Chapter 4 Chemical Kinetics in Class 12 Chemistry talks about different chemical reactions and physical processes in detail. It includes various topics like dependence on the rate of concentration, molecularity mechanism, collision theory, temperature dependence, integrated equations, and catalysts. The other more important topics that students may need to put extra focus on while preparing for their exam include First Order Reaction Kinetics, Arrhenius Equation, and Order and Molecularity.

6. Why should I refer to the NCERT Solutions for Class 12 Chemistry Chapter 4?

Chemistry in Class 12 can often seem difficult to comprehend for students. Being able to score well in the Class 12 Board Exams requires students to have a strong grip on every subject. To be able to achieve a thorough understanding of all concepts that have been taught in Class 12 Chemistry, referring to NCERT Solutions for Class 12 Chemistry Chapter 4 will provide students with extra practice and revision.

7. How many questions are covered in NCERT Solutions for Class 12 Chemistry Chapter 4?

There are a total of 39 questions that have been provided in Class 12 Chemistry NCERT for Chapter 4 Chemical Kinetics. These have been divided into nine Intext Questions and 30 questions under NCERT Exercise. The majority of these questions require students to solve numericals related to the given reactions. Students can find step-by-step solutions explained in detail for each of these questions on the page Chemical Kinetics NCERT Solutions on the official website of Vedantu at free of cost.

8. What are the important topics in  class 12 chemical kinetics NCERT solutions ?

The important topics in class 12 chemical kinetics NCERT solutions encompass rate of reaction, factors affecting rate, integrated rate equations, collision theory, activation energy, and catalyst.

9. What is the main focus of kinetics?

The main focus of kinetics in class 12 chemistry is to study the rates of chemical reactions and the factors influencing these rates, as outlined in class 12 chemistry Chapter 3 NCERT solutions.

10. How are chemical kinetics used in real life?

Chemical kinetics class 12 exercise solutions are used in real life to understand reaction mechanisms, optimise reaction conditions in industrial processes, and design efficient chemical reactors. Students can also refer to chemical kinetics class 12 exercise solutions for more practice.

11. What is the role of chemical kinetics in industry?

In industry, NCERT solutions chemical kinetics play a crucial role in optimizing reaction conditions, enhancing product yields, and ensuring the efficiency of manufacturing processes.

12. How is chemical kinetics used in medicine?

Chemical kinetics in medicine, as studied in class 12 chemistry chemical kinetics NCERT solutions, are utilised to study drug reactions within the body, determine the rates of metabolic processes, and develop controlled-release formulations for medications.

13. How do chemical kinetics help in stability?

Chemical kinetics NCERT solutions help in stability by providing insights into reaction mechanisms, allowing for the prediction and control of reaction rates, and ensuring the stability of products over time.