Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry Miscellaneous Exercise

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 11 Miscellaneous Exercise - Free PDF Download

Class 12 Maths NCERT Solutions for Chapter 11 Three Dimensional Geometry includes solutions to all Miscellaneous Exercise problems. Three Dimensional Geometry Class 12 NCERT Solutions Miscellaneous Exercises are based on the ideas presented in Maths Chapter 11. This activity is crucial for both the CBSE Board examinations and competitive tests. To perform well on the board exam, download the latest CBSE Class 12 Maths Syllabus in PDF format, which are solved by experts to help you understand easily.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Class 12 Maths Chapter 11 Three Dimensional Geometry

Miscellaneous Exercise

1.  find the angle between the lines whose  direction ratios are $\text{a,b,c}$ and $\text{b-c, c-a, a-b,}$ .

Ans: As we know that, for any angle $\text{ }\!\!\theta\!\!\text{ }$, with direction cosines, $\text{a,b,c}$ and $\text{b-c, c-a, a-b}$ can be found by,

$\text{cos }\!\!\theta\!\!\text{ =}\left| \frac{\text{a}\left( \text{b-c} \right)\text{+b}\left( \text{b-c} \right)\text{+c}\left( \text{c-a} \right)}{\sqrt{{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}\sqrt{{{\left( \text{b-c} \right)}^{\text{2}}}\text{+}{{\left( \text{c-a} \right)}^{\text{2}}}\text{+}{{\left( \text{a-b} \right)}^{\text{2}}}}}} \right|$

Solving this we get, $\text{cos }\!\!\theta\!\!\text{ =0}$

$\text{ }\!\!\theta\!\!\text{ =co}{{\text{s}}^{\text{-1}}}\text{0}$

$\Rightarrow \text{ }\!\!\theta\!\!\text{ }={{90}^{\circ }}$

Therefore, the angle between the two lines will be ${{90}^{\circ }}$.

 

2. Find the equation of a line parallel to  x-axis  line passing through the origin.

Ans: As it is given that the line is passing through the origin and is also parallel to x-axis is x-axis,

Now,

Let us consider a point on x-axis be $\text{A}$ 

So, the coordinates of $A$ will be $\left( \text{a,0,0} \right)$

Now, the direction ratios of $\text{OA}$ will be,

$\Rightarrow \left( \text{a-0} \right)\text{=a,0,0}$

The equation of $\text{OA}$$\Rightarrow \frac{\text{x-0}}{\text{a}}\text{=}\frac{\text{y-0}}{\text{0}}\text{=}\frac{\text{z-0}}{\text{0}}\Rightarrow \frac{\text{x}}{\text{1}}\text{=}\frac{\text{y}}{\text{0}}\text{=}\frac{\text{z}}{\text{0}}\text{=a}$

Therefore, the equation of the line passing through origin and parallel to x-axis is $\frac{\text{x}}{\text{1}}\text{=}\frac{\text{y}}{\text{0}}\text{=}\frac{\text{z}}{\text{0}}$.


3.if the lines $\frac{\text{x-1}}{\text{-3}}\text{=}\frac{\text{y-2}}{\text{2k}}\text{=}\frac{\text{z-3}}{\text{2}}$ and $\frac{\text{x-1}}{\text{3k}}\text{=}\frac{\text{y-1}}{\text{1}}\text{=}\frac{\text{z-6}}{\text{-5}}$ are perpendicular Find the value of k

Ans: From the given equation we can say that ${{\text{a}}_{\text{1}}}\text{=-3,}{{\text{b}}_{\text{1}}}\text{=2k,}{{\text{c}}_{\text{1}}}\text{=2}$and ${{\text{a}}_{\text{2}}}\text{=3k,}{{\text{b}}_{\text{2}}}\text{=1,}{{\text{c}}_{\text{2}}}\text{=-5}$.

We know that the two lines are perpendicular, if ${{\text{a}}_{\text{1}}}{{\text{a}}_{\text{2}}}\text{+}{{\text{b}}_{\text{1}}}{{\text{b}}_{\text{2}}}\text{+}{{\text{c}}_{\text{1}}}{{\text{c}}_{\text{2}}}\text{=0}$

$\text{-3}\left( \text{3k} \right)\text{+2k }\!\!\times\!\!\text{ 1+2}\left( \text{-5} \right)\text{=0}$

$\Rightarrow \text{-9k+2k-10=0}$

$\Rightarrow \text{7k=-10}$

$\Rightarrow \text{k=}\frac{\text{-10}}{\text{7}}$

Therefore, the value of $k$is $\text{-}\frac{\text{10}}{\text{7}}$

 

4. Find the shortest distance between these two lines $\overrightarrow{r}=6\widehat{i}+2\widehat{j}+2\widehat{k}+\lambda \left( \widehat{i}-2\widehat{j}+2\widehat{k} \right)$

\[\overrightarrow{r}=-4\widehat{i}-\widehat{k}+\mu \left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)\]

Ans: According to the question, we need to find the distance between the lines,

$\overrightarrow{r}=6\widehat{i}+2\widehat{j}+2\widehat{k}+\lambda \left( \widehat{i}-2\widehat{j}+2\widehat{k} \right)$

\[\overrightarrow{r}=-4\widehat{i}-\widehat{k}+\mu \left( 3\widehat{i}-2\widehat{j}-2\widehat{k} \right)\]

As we know we can find the shortest distance by,

$d=\left| \frac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|$

Now, from the equation of lines we get

\[{{\overrightarrow{\text{a}}}_{1}}\text{=}6\widehat{i}+2\widehat{j}+2\widehat{k}\]

$\overrightarrow{{{\text{b}}_{\text{1}}}}{=\hat{i}-2\hat{j}+2\hat{k}}$

$\overrightarrow{{{\text{a}}_{\text{2}}}}\text{=}-4\widehat{i}-\widehat{k}$

$\overrightarrow{{{\text{b}}_{\text{2}}}}\text{=}3\widehat{i}-2\widehat{j}-2\widehat{k}$

$\Rightarrow \overrightarrow{{{\text{a}}_{\text{2}}}}\text{0}\overrightarrow{{{\text{a}}_{\text{1}}}}\text{=}\left( -4\widehat{i}-\widehat{k} \right)\text{0}\left( 6\widehat{i}+2\widehat{j}+2\widehat{k} \right)\text{=}-10\widehat{i}-2\widehat{j}-3\widehat{k}$

$\Rightarrow \overrightarrow{{{\text{b}}_{\text{1}}}}\text{ }\!\!\times\!\!\text{ }\overrightarrow{{{\text{b}}_{\text{2}}}}\text{=}\left| \begin{matrix} {{\hat{i}}} & {{\hat{j}}} & {{\hat{k}}}  \\ \text{1} & \text{-2} & \text{2}  \\ \text{3} & \text{-2} & \text{-2}  \\ \end{matrix} \right|\text{=}\left( \text{4+4} \right){\hat{i}-}\left( \text{-2-6} \right){\hat{j}+}\left( \text{-2+6} \right){\hat{k}}$

$\left( {{{\vec{b}}}_{\text{1}}}\text{ }\times \text{ }{{{\vec{b}}}_{\text{2}}} \right)\text{.}\left( \overrightarrow{{{\text{a}}_{\text{2}}}}\text{0}\overrightarrow{{{\text{a}}_{\text{1}}}} \right)\text{=}\left( 8\widehat{i}+8\widehat{j}+4\widehat{k} \right)\text{.}\left( -10\widehat{i}-2\widehat{j}-3\widehat{k} \right)$

$\text{=-80-16-12}$

$\text{=-108}$

Now, putting these values in $d=\left| \frac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|$, we get

$\text{d=}\left| \frac{\text{-108}}{\text{12}} \right|\text{=9}$

Therefore, the shortest distance between the above two lines is of $\text{9}$ units.


5. Find the vector equation of the line passing through the points $\left( \text{1,2,-4} \right)$ and perpendicular to the two lines $\frac{\text{x-8}}{\text{3}}\text{=}\frac{\text{y+19}}{\text{-16}}\text{=}\frac{\text{z-10}}{\text{7}}$ and $\frac{\text{x-15}}{\text{3}}\text{=}\frac{\text{y-29}}{\text{8}}\text{=}\frac{\text{z-5}}{\text{-5}}$

Ans: According to the question, we get that ${\vec{b}=}{{\text{b}}_{\text{1}}}{\hat{i}+}{{\text{b}}_{\text{2}}}{\hat{j}+}{{\text{b}}_{\text{3}}}{\hat{k}}$ and ${\vec{a}=\hat{i}+2\hat{j}-4\hat{k}}$

We know that the equation of the line passing through point and also parallel to vector, we get

${\vec{r}=\hat{i}+2\hat{j}-4\hat{k}+ }\!\!\lambda\!\!\text{ }\left( {{\text{b}}_{\text{1}}}{\hat{i}+}{{\text{b}}_{\text{2}}}{\hat{j}+}{{\text{b}}_{\text{3}}}{\hat{k}} \right)$ … $\left( \text{1} \right)$

Now, the equation of the two lines will be 

$\frac{\text{x-8}}{\text{3}}\text{=}\frac{\text{y+19}}{\text{-16}}\text{=}\frac{\text{z-10}}{\text{7}}$ … $\left( \text{2} \right)$

$\frac{\text{x-15}}{\text{3}}\text{=}\frac{\text{y-29}}{\text{8}}\text{=}\frac{\text{z-5}}{\text{-5}}$ … $\left( \text{3} \right)$

As we know that line $\left( \text{1} \right)$ and $\left( \text{2} \right)$ are perpendicular to each other, we get

$\text{3}{{\text{b}}_{\text{1}}}\text{-16}{{\text{b}}_{\text{2}}}\text{+7}{{\text{b}}_{\text{3}}}\text{=0}$ … $\left( \text{4} \right)$

Also, we know that the line $\left( \text{1} \right)$ and $\left( \text{3} \right)$ are perpendicular to each other, we get

$\text{3}{{\text{b}}_{\text{1}}}\text{+8}{{\text{b}}_{\text{2}}}\text{-5}{{\text{b}}_{\text{3}}}\text{=0}$ … $\left( \text{5} \right)$

Now, from equation $\left( \text{4} \right)$ and $\left( \text{5} \right)$ we get that

$\frac{{{\text{b}}_{\text{1}}}}{\left( \text{-16} \right)\left( \text{-5} \right)\text{-8}\left( \text{7} \right)}\text{=}\frac{{{\text{b}}_{\text{2}}}}{\text{7}\left( \text{3} \right)\text{-3}\left( \text{-5} \right)}\text{=}\frac{{{\text{b}}_{\text{3}}}}{\text{3}\left( \text{8} \right)\text{-3}\left( \text{-16} \right)}$

$\Rightarrow \frac{{{\text{b}}_{\text{1}}}}{\text{24}}\text{=}\frac{{{\text{b}}_{\text{2}}}}{\text{36}}\text{=}\frac{{{\text{b}}_{\text{3}}}}{\text{72}}\Rightarrow \frac{{{\text{b}}_{\text{1}}}}{\text{2}}\text{=}\frac{{{\text{b}}_{\text{2}}}}{\text{3}}\text{=}\frac{{{\text{b}}_{\text{3}}}}{\text{6}}$

Therefore, direction ratios of ${\vec{b}}$ are $\text{2,3,6}$

Which means ${\vec{b}=2\hat{i}+3\hat{j}+6\hat{k}}$

Putting ${\vec{b}=2\hat{i}+3\hat{j}+6\hat{k}}$ in equation $\left( \text{1} \right)$, we get

$\vec{r}=\left( \hat{i}+2\hat{j}-4\hat{k} \right)\text{+ }\lambda \text{ }\left( 2\widehat{i}+3\widehat{j}+6\widehat{k} \right)$


Conclusion

NCERT solutions for class 12 maths Three Dimensional Geometry miscellaneous exercise is crucial for understanding various concepts thoroughly. It covers diverse problems that require the application of multiple formulas and techniques. It's important to focus on understanding the underlying principles behind each question rather than just memorizing solutions. Remember to understand the theory behind each concept, practice regularly, and refer to solved examples to master this exercise effectively.


Class 12 Maths Chapter 11: Exercises Breakdown

Exercise

Number of Questions

Exercise 11.1

5

Exercise 11.2

15


CBSE Class 12 Maths Chapter 11 Other Study Materials


Chapter-Specific NCERT Solutions for Class 12 Maths

Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry Miscellaneous Exercise

1. What is the correct step-by-step approach to solving problems in the NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry Miscellaneous Exercise?

To solve problems in this chapter, begin by identifying the type of question (line, plane, distance, or angle problem). Break down the problem by clearly stating the knowns and unknowns, then apply the appropriate vector and Cartesian equations. Use direction ratios and cosines for lines, cross and dot products for angles, and the distance or coplanarity formula where needed. Write each step explicitly as per CBSE guidelines to ensure clarity and marks.

2. How do NCERT Solutions ensure students understand the methods in Miscellaneous Exercise for Three Dimensional Geometry?

NCERT Solutions focus on stepwise explanations for each problem, using the official CBSE format. Each solution includes justifications for every step, relevant formulae, and the logic behind their selection. This method not only helps students get the answer but also clarifies the reasoning and application of rules in different contexts, reducing rote learning and reinforcing concepts.

3. Why is it important to use direction ratios and direction cosines in solving 3D geometry questions?

Direction ratios and cosines allow you to represent the orientation of lines and planes in space precisely. By using these values, it's possible to calculate angles between lines or planes, test for parallelism or perpendicularity, and construct accurate algebraic equations for lines and planes. Mastery of these concepts is essential for scoring marks in board exams and for entrance exams like JEE.

4. What are common mistakes students make when solving step-wise NCERT questions in Three Dimensional Geometry?

Common mistakes include:

  • Forgetting to write all steps and just presenting the answer, losing method marks.
  • Mixing up the use of dot product and cross product.
  • Making calculation or sign errors in vector/Cartesian form transformation.
  • Not justifying the selection of a formula for a particular problem.
  • Ignoring unit vectors when calculating direction cosines.
Following the stepwise CBSE pattern reduces these errors significantly.

5. How can solving the Miscellaneous Exercise help in mastering all concepts from Chapter 11?

The Miscellaneous Exercise integrates all topics covered in the chapter, such as direction ratios, equations of lines and planes, coplanarity, shortest distances, and angles. By tackling these mixed problems, you reinforce multiple concepts simultaneously, get exposed to unusual question types, and practice applying the correct method in step-by-step NCERT solution style. This improves both understanding and exam performance.

6. How is the shortest distance between two skew lines found using NCERT's recommended stepwise method?

The shortest distance between two skew lines is found by:

  • Writing the vector equations of both lines.
  • Calculating the direction vectors (using coefficients of the parameter).
  • Finding the vector connecting any point on the first line to any point on the second.
  • Taking the cross product of direction vectors to get a normal vector.
  • Using the formula: d = |(b1 × b2) · (a1 – a2)| / |b1 × b2| and detailing every step.
This method is preferred by CBSE examiners and illustrated in official NCERT solutions.

7. If a line is perpendicular to two given lines, how do you find its direction ratios as per CBSE NCERT Solutions?

To find direction ratios of a line perpendicular to two given lines:

  • Obtain the direction ratios of both lines.
  • Calculate the cross product of their direction vectors; this gives the direction ratios of the required line.
  • Express the results in simplest integer form.
  • Present all steps as per NCERT's stepwise format.
This technique is central to many miscellaneous exercise questions in the chapter.

8. What should a student do if they get confused between vector and Cartesian forms while solving CBSE Class 12 Miscellaneous Exercise questions?

If you're confused:

  • Refer to the NCERT's stepwise conversion process between vector and Cartesian forms.
  • Recall that the vector form typically involves position vectors and direction vectors, while Cartesian uses the x, y, z variable representation.
  • Write out both forms side-by-side using a solved NCERT example as a reference.
  • Review examples in the NCERT Solutions for clarity.
Consistent practice with stepwise solutions helps build accuracy.

9. How do the NCERT Solutions for Miscellaneous Exercise benefit students preparing for both CBSE Board Exams and competitive exams like JEE?

These solutions emphasize systematic, step-by-step reasoning and thorough method presentation, which align with both CBSE Board and JEE marking criteria. They strengthen problem-solving skills by exposing students to integrated application-based questions and prevent common exam mistakes by modeling the ideal answer structure.

10. What is the significance of showing all steps in NCERT Solutions for this chapter, rather than just writing the final answer?

CBSE marking schemes allocate marks for each logical step shown. By demonstrating each stage of your reasoning, you maximize partial marks even if a calculation is wrong later. This also shows your understanding of the method, which is essential for higher-order thinking skills and is the primary purpose of the NCERT Solutions methodology.