Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Mathematics Chapter 9 Differential Equations – NCERT Solutions 2025-26

ffImage
banner

Download Free PDF of Differential Equations Exercise 9.5 for Class 12 Maths

As you prepare for your Class 12 Mathematics board exam, mastering Chapter 9 Differential Equations is essential for strong performance. Exercise 9.5 stands out in the NCERT syllabus for its focus on application-driven problems, building your ability to solve a range of first order, first degree differential equations with clarity and precision.

toc-symbolTable of Content
toggle-arrow

With a consistent chapter weightage of 7 marks in CBSE board exams, these solutions will strengthen your understanding of order and degree, general and particular solutions, and the separation of variables method. You will find stepwise approaches and exam-standard answers, matching the expectations behind queries like “ex 9.5 class 12 maths ncert solutions.”


By practicing these expert-verified solutions from Vedantu, you gain both accuracy and confidence for complex integration and first order techniques. For complete support, revisit the Class 12 Maths syllabus anytime during your revision.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 9 - Differential Equations

Exercise 9.5

1. Solve the differential equation \[\dfrac{{dy}}{{dx}} + 2y = \sin x\].

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = 2\] and \[Q = \sin x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {2dx} }}\]

\[I.F. = {e^{2x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{e^{2x}} = \int {\sin x.{e^{2x}}dx}  + C.......\left( 1 \right)\]

Let \[I = \int {\sin x.{e^{2x}}dx} \]

Using integration by parts,

\[I = \sin x\int {{e^{2x}}dx}  - \int {\left( {\dfrac{{d\left( {\sin x} \right)}}{{dx}}.\int {{e^{2x}}dx} } \right)} dx\]

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \int {\cos x.\dfrac{{{e^{2x}}}}{2}dx} \]

Again using integration by parts,

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \cos x\int {\dfrac{{{e^{2x}}}}{2}dx}  + \int {\left( {\dfrac{{d\left( {\cos x} \right)}}{{dx}}.\int {\dfrac{{{e^{2x}}}}{2}dx} } \right)} dx\]

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4} + \int {\left( { - \sin x} \right).\dfrac{{{e^{2x}}}}{4}dx} \]

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4} - \dfrac{1}{4}\int {\sin x.{e^{2x}}dx} \]

As \[I = \int {\sin x.{e^{2x}}dx} \],

Therefore,

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4} - \dfrac{1}{4}I\]

\[I + \dfrac{1}{4}I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4}\]

\[\dfrac{5}{4}I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4}\]

\[I = \dfrac{{{e^{2x}}}}{5}\left( {2\sin x - \cos x} \right)\]

Substituting this value of I in equation 1.

\[y{e^{2x}} = \dfrac{{{e^{2x}}}}{5}\left( {2\sin x - \cos x} \right) + C\]

\[y = \dfrac{1}{5}\left( {2\sin x - \cos x} \right) + C{e^{ - 2x}}\]

This required differential equation .


2. Solve the differential equation \[\dfrac{{dy}}{{dx}} + 3y = {e^{ - 2x}}\].

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = 3\] and \[Q = {e^{ - 2x}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {3dx} }}\]

\[I.F. = {e^{3x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{e^{3x}} = \int {\left( {{e^{3x}} \times {e^{ - 2x}}} \right)dx}  + C\]

\[y{e^{3x}} = \int {{e^x}dx}  + C\]

\[y{e^{3x}} = {e^x} + C\]

\[y = {e^{ - 2x}} + C{e^x}\]

This required differential equation.


3. Solve the differential equation \[\dfrac{{dy}}{{dx}} + \dfrac{y}{x} = {x^2}\].

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{1}{x}\] and \[Q = {x^2}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{1}{x}dx} }}\]

\[I.F. = {e^{\log x}}\]

\[I.F. = x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[yx = \int {\left( {{x^2}.x} \right)dx}  + C\]

\[yx = \int {\left( {{x^3}} \right)dx}  + C\]

\[yx = \dfrac{{{x^4}}}{4} + C\]

This required differential equation.


4. Solve the differential equation \[\dfrac{{dy}}{{dx}} + \left( {\sec x} \right)y = \tan x{\text{ }}\left( {0 \leqslant x \leqslant \dfrac{\pi }{2}} \right)\]

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \sec x\] and \[Q = \tan x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\sec xdx} }}\]

\[I.F. = {e^{\log \left( {\sec x + \tan x} \right)}}\]

\[I.F. = \sec x + \tan x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \int {\tan x\left( {\sec x + \tan x} \right)dx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \int {\sec x\tan xdx}  + \int {{{\tan }^2}xdx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \sec x + \int {\left( {{{\sec }^2}x - 1} \right)dx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \sec x + \tan x - x + C\]

This required differential equation.


5. Solve the differential equation \[{\cos ^2}x\dfrac{{dy}}{{dx}} + y = \tan x{\text{ }}\left( {0 \leqslant x\dfrac{\pi }{2}} \right)\]

Ans: On rearranging the given equation,

\[\dfrac{{dy}}{{dx}} + {\sec ^2}x.y = {\sec ^2}x\tan x\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = {\sec ^2}x\] and \[Q = {\sec ^2}x\tan x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {{{\sec }^2}xdx} }}\]

\[I.F. = {e^{\tan x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{e^{\tan x}} = \int {\tan x{{\sec }^2}x{e^{\tan x}}dx + C} \]

Put \[\tan x = t\]

Differentiating w.r.t. \[t\].

\[{\sec ^2}xdx = dt\]

Therefore, above equation become,

\[y{e^{\tan x}} = \int {t{e^t}dt + C} \]

Using integration by parts,

\[y{e^{\tan x}} = t{e^t} - \int {{e^t}dt + C} \]

\[y{e^{\tan x}} = t{e^t} - {e^t} + C\]

Substituting the value of \[t\] .

\[y{e^{\tan x}} = \tan x{e^{\tan x}} - {e^{\tan x}} + C\]

\[y = \tan x - 1 + C{e^{ - \tan x}}\]

This is required differential equation.


6. Solve the differential equation \[x\dfrac{{dy}}{{dx}} + 2y = {x^2}\log x\]

Ans: On rearranging given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{2}{x}y = x\log x\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{2}{x}\] and \[Q = x\log x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{2}{x}dx} }}\]

\[I.F. = {e^{\log {x^2}}}\]

\[I.F. = {x^2}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{x^2} = \int {x\log x.{x^2}dx}  + C\]

\[y{x^2} = \int {{x^3}\log xdx}  + C\]

Using integration by parts,

\[y{x^2} = \log x\int {{x^3}dx}  - \int {\left( {\dfrac{d}{{dx}}\left( {\log x} \right)\int {{x^3}dx} } \right)dx}  + C\]

\[y{x^2} = \dfrac{{{x^4}\log x}}{4} - \int {\left( {\dfrac{1}{x}.\dfrac{{{x^4}}}{4}} \right)dx + C} \]

\[y{x^2} = \dfrac{{{x^4}\log x}}{4} - \dfrac{1}{4}.\dfrac{{{x^4}}}{4} + C\]

\[y{x^2} = \dfrac{{{x^4}\log x}}{4} - \dfrac{{{x^4}}}{{16}} + C\]

\[y = \dfrac{{{x^2}\log x}}{4} - \dfrac{{{x^2}}}{{16}} + C{x^{ - 2}}\]

\[y = \dfrac{{{x^2}}}{{16}}\left( {4\log x - 1} \right) + C{x^{ - 2}}\]

This is required differential equation.


7. Solve the differential equation \[x\log x\dfrac{{dy}}{{dx}} + y = \dfrac{2}{x}\log x\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{y}{{\log x}} = \dfrac{2}{{{x^2}}}\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{1}{{x\log x}}\] and \[Q = \dfrac{2}{{{x^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[\]

\[I.F. = {e^{\log \left( {\log x} \right)}}\]

\[I.F. = \log x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\log x = \int {\left( {\dfrac{2}{{{x^2}}}\log x} \right)dx}  + C\]

Using integration by parts,

\[y\log x = 2\left[ {\log x\int {\dfrac{1}{{{x^2}}}dx}  - \int {\left( {\dfrac{d}{{dx}}\left( {\log x} \right)\int {\dfrac{1}{{{x^2}}}dx} } \right)dx} } \right] + C\]

\[y\log x = 2\left[ {\log x\left( { - \dfrac{1}{x}} \right) - \int {\left( {\dfrac{1}{x}\left( { - \dfrac{1}{x}} \right)} \right)dx} } \right] + C\]

\[y\log x = 2\left[ {\log x\left( { - \dfrac{1}{x}} \right) + \int {\dfrac{1}{{{x^2}}}dx} } \right] + C\]

\[y\log x = 2\left[ {\log x\left( { - \dfrac{1}{x}} \right) - \dfrac{1}{x}} \right] + C\]

\[y\log x =  - \dfrac{2}{x}\left( {1 + \log x} \right) + C\]

This is required differential equation.


8. Solve the differential equation \[\left( {1 + {x^2}} \right)dy + 2xydx = \cot xdx\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{{2xy}}{{1 + {x^2}}} = \dfrac{{\cot x}}{{1 + {x^2}}}\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{{2x}}{{1 + {x^2}}}\] and \[Q = \dfrac{{\cot x}}{{1 + {x^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{{2x}}{{1 + {x^2}}}dx} }}\]

\[I.F. = {e^{\log \left( {1 + {x^2}} \right)}}\]

\[I.F. = 1 + {x^2}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\dfrac{{\cot x}}{{1 + {x^2}}} \times \left( {1 + {x^2}} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\cot xdx}  + C\]

\[y\left( {1 + {x^2}} \right) = \log \left( {\sin x} \right) + C\]

This is required differential equation.


9. Solve the differential equation \[x\dfrac{{dy}}{{dx}} + y - x + xy\cot x = 0\]

Ans: On rearranging given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{x} + \cot x} \right)y = 1\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{1}{x} + \cot x\] and \[Q = 1\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\left( {\dfrac{1}{x} + \cot x} \right)dx} }}\]

\[I.F. = {e^{\log x + \log \sin x}}\]

\[I.F. = x\sin x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[yx\sin x = \int {\left( {1.x\sin x} \right)dx}  + C\]

\[yx\sin x = x\int {\sin xdx - \int {\left( {\dfrac{d}{{dx}}\left( x \right)\int {\sin xdx} } \right)dx} }  + C\]

\[yx\sin x = x\left( { - \cos x} \right) - \int {\left( { - \cos x} \right)dx}  + C\]

\[yx\sin x =  - x\cos x + \sin x + C\]

\[y = \dfrac{{ - x\cos x}}{{x\sin x}} + \dfrac{{\sin x}}{{x\sin x}} + \dfrac{C}{{x\sin x}}\]

\[y =  - \cot x + \dfrac{1}{x} + \dfrac{C}{{x\sin x}}\]

This is required differential equation.


10. Solve the differential equation \[\left( {x + y} \right)\dfrac{{dy}}{{dx}} = 1\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} - x = y\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - 1\] and \[Q = y\]

Calculating integration factor,

\[I.F. = {e^{\int { - 1dy} }}\]

\[I.F. = {e^{ - y}}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[x{e^{ - y}} = \int {\left( {y{e^{ - y}}} \right)dy}  + C\]

\[x{e^{ - y}} = y\int {{e^{ - y}}dy}  - \int {\left( {\dfrac{d}{{dy}}\left( y \right)\int {{e^{ - y}}dy} } \right)dy}  + C\]

\[x{e^{ - y}} =  - y{e^{ - y}} - \int {\left( { - {e^{ - y}}} \right)dy}  + C\]

\[x{e^{ - y}} =  - y{e^{ - y}} - {e^{ - y}} + C\]

\[x =  - y - 1 + C{e^y}\]

\[x + y + 1 = C{e^y}\]

This is required differential equation.


11. Solve the differential equation \[ydx + \left( {x - {y^2}} \right)dy = 0\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} + \dfrac{x}{y} = y\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P = \dfrac{1}{y}\] and \[Q = y\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdy} }}\]

\[I.F. = {e^{\int {\dfrac{1}{y}dy} }}\]

\[I.F. = {e^{\log y}}\]

\[I.F. = y\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[xy = \int {\left( {y.y} \right)dy}  + C\]

\[xy = \int {{y^2}dy}  + C\]

\[xy = \dfrac{{{y^3}}}{3} + C\]

This is required differential equation.


12. Solve the differential equation \[\left( {x + 3{y^2}} \right)\dfrac{{dy}}{{dx}} = y{\text{ }}\left( {y > 0} \right)\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} - \dfrac{x}{y} = 3y\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - \dfrac{1}{y}\] and \[Q = 3y\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdy} }}\]

\[I.F. = {e^{\int {\left( { - \dfrac{1}{y}} \right)dy} }}\]

\[I.F. = {e^{\log \left( {\dfrac{1}{y}} \right)}}\]

\[I.F. = \dfrac{1}{y}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[x\left( {\dfrac{1}{y}} \right) = \int {\left( {3y \times \dfrac{1}{y}} \right)dy}  + C\]

\[\dfrac{x}{y} = \int {3dy}  + C\]

\[\dfrac{x}{y} = 3y + C\]

\[x = 3{y^2} + Cy\]

This is required differential equation.


13. Solve the differential equation \[\dfrac{{dy}}{{dx}} + 2y\tan x = \sin x;{\text{   }}y = 0{\text{ when }}x = \dfrac{\pi }{3}\]

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = 2\tan x\] and \[Q = \sin x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {2\tan xdx} }}\]

\[I.F. = {e^{\log \left( {{{\sec }^2}x} \right)}}\]

\[I.F. = {\sec ^2}x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{\sec ^2}x = \int {\left( {\sin x.{{\sec }^2}x} \right)dx}  + C\]

\[y{\sec ^2}x = \int {\left( {\sec x\tan x} \right)dx}  + C\]

\[y{\sec ^2}x = \sec x + C......\left( 1 \right)\]

Now, \[y = 0{\text{ when }}x = \dfrac{\pi }{3}\]

\[0 \times {\sec ^2}\left( {\dfrac{\pi }{3}} \right) = \sec \left( {\dfrac{\pi }{3}} \right) + C\]

\[C =  - 2\]

Substituting the value of \[C =  - 2\]in equation \[\left( 1 \right)\].

\[y{\sec ^2}x = \sec x - 2\]

\[y = \cos x - 2{\sec ^2}x\]

This is required differential equation.


14. Solve the differential equation \[\left( {1 + {x^2}} \right)\dfrac{{dy}}{{dx}} + 2xy = \dfrac{1}{{1 + {x^2}}}{\text{   }}y = 0{\text{ when }}x = 1\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{{2xy}}{{1 + {x^2}}} = \dfrac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{{2x}}{{1 + {x^2}}}\] and \[Q = \dfrac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{{2x}}{{1 + {x^2}}}dx} }}\]

\[I.F. = {e^{\log \left( {1 + {x^2}} \right)}}\]

\[I.F. = 1 + {x^2}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\left( {\dfrac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}.\left( {1 + {x^2}} \right)} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\dfrac{1}{{1 + {x^2}}}dx}  + C\]

\[y\left( {1 + {x^2}} \right) = {\tan ^{ - 1}}x + C......\left( 1 \right)\]

Now, \[y = 0{\text{ when }}x = 1\]

\[0 = {\tan ^{ - 1}}1 + C\]

\[C =  - \dfrac{\pi }{4}\]

Substituting the value of \[C =  - \dfrac{\pi }{4}\] in equation\[\left( 1 \right)\],

\[y\left( {1 + {x^2}} \right) = {\tan ^{ - 1}}x - \dfrac{\pi }{4}\]

This is required differential equation.


15. Solve the differential equation \[\dfrac{{dy}}{{dx}} - 3y\cot x = \sin 2x{\text{        }}y = 2{\text{ when }}x = \dfrac{\pi }{2}\]

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P =  - 3\cot x\] and \[Q = \sin 2x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int { - 3\cot xdx} }}\]

\[I.F. = {e^{ - 3\log \left( {\sin x} \right)}}\]

\[I.F. = \dfrac{1}{{{{\sin }^3}x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y.\dfrac{1}{{{{\sin }^3}x}} = \int {\left( {\sin 2x.\dfrac{1}{{{{\sin }^3}x}}} \right)dx}  + C\]

\[y.\cos e{c^3}x = 2\int {\left( {\cot x\cos ecx} \right)dx}  + C\]

\[y.\cos e{c^3}x =  - 2\cos ecx + C\]

\[y =  - \dfrac{2}{{\cos e{c^2}x}} + \dfrac{C}{{\cos e{c^3}x}}\]

\[y =  - 2{\sin ^2}x + C{\sin ^3}x......\left( 1 \right)\]

Now, \[y = 2{\text{ when }}x = \dfrac{\pi }{2}\]

\[2 =  - 2{\sin ^2}\left( {\dfrac{\pi }{2}} \right) + C{\sin ^3}\left( {\dfrac{\pi }{2}} \right)\]

\[2 =  - 2 + C\]

\[C = 4\]

Substituting the value of \[C = 4\]in equation 1,

\[y =  - 2{\sin ^2}x + 4{\sin ^3}x\]

\[y = 4{\sin ^3}x - 2{\sin ^2}x\]

This is required differential equation.


16. Find the equation of a curve passing through the origin given that the slope of thetangent to the curve at any point \[(x,y)\] is equal to the sum of the coordinates ofthe point.

Ans: Let \[f\left( {x,y} \right)\] be the curve passing through the origin.

At point \[(x,y)\], the slope of curve will be \[\dfrac{{dy}}{{dx}}\] .

According to the question,

\[\dfrac{{dy}}{{dx}} - y = x\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - 1\] and \[Q = x\]

Calculating integration factor,

\[I.F. = {e^{\int { - 1dx} }}\]

\[I.F. = {e^{ - x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[y{e^{ - x}} = \int {\left( {x{e^{ - x}}} \right)dx}  + C\]

\[y{e^{ - x}} = x\int {{e^{ - x}}dy}  - \int {\left( {\dfrac{d}{{dx}}\left( x \right)\int {{e^{ - x}}dx} } \right)dx}  + C\]

\[y{e^{ - x}} =  - x{e^{ - x}} - \int {\left( { - {e^{ - x}}} \right)dx}  + C\]

\[y{e^{ - x}} =  - x{e^{ - x}} - {e^{ - x}} + C\]

\[y =  - x - 1 + C{e^x}\]

\[x + y + 1 = C{e^x}......\left( 1 \right)\]

As, equation is passing through the origin.

Therefore,

\[0 + 0 + 1 = C{e^0}\]

\[1 = C\]

Substituting the value of \[1 = C\] in equation 1.

\[x + y + 1 = {e^x}\]

This is required differential equation of curve passing through origin.


17. Find the equation of a curve passing through the point \[\left( {0,2} \right)\] given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope ofthe tangent to the curve at that point by 5.

Ans: Let \[f\left( {x,y} \right)\] be the curve passing through the origin.

At point \[(x,y)\], the slope of curve will be \[\dfrac{{dy}}{{dx}}\] .

According to the question,

\[\dfrac{{dy}}{{dx}} + 5 = x + y\]

\[\dfrac{{dy}}{{dx}} - y = x - 5\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - 1\] and \[Q = x - 5\]

Calculating integration factor,

\[I.F. = {e^{\int { - 1dx} }}\]

\[I.F. = {e^{ - x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[y{e^{ - x}} = \int {\left( {x - 5} \right){e^{ - x}}dx}  + C\]

\[y{e^{ - x}} = \left( {x - 5} \right)\int {{e^{ - x}}dx}  - \int {\left( {\dfrac{d}{{dx}}\left( {x - 5} \right)\int {{e^{ - x}}dx} } \right)} dx + C\]

\[y{e^{ - x}} = \left( {5 - x} \right){e^{ - x}} + \int {{e^{ - x}}dx}  + C\]

\[y{e^{ - x}} = \left( {5 - x} \right){e^{ - x}} - {e^{ - x}} + C\]

\[y{e^{ - x}} = \left( {4 - x} \right){e^{ - x}} + C\]

\[y = 4 - x + C{e^x}\]

\[y + x - 4 = C{e^x}......\left( 1 \right)\]

As equation is passing through \[\left( {0,2} \right)\] .

Therefore,

\[0 + 2 - 4 = C{e^0}\]

\[ - 2 = C\]

Substituting the value of \[ - 2 = C\] in equation 1.

\[y + x - 4 =  - 2{e^x}\]

This the required equation of curve passing through \[\left( {0,2} \right)\] .


18. The Integrating Factor of the differential equation \[x\dfrac{{dy}}{{dx}} - y = 2{x^2}\] is 

\[\left( A \right){e^{ - x}}\]

\[\left( B \right){e^{ - y}}\]

\[\left( C \right)\dfrac{1}{x}\]

\[\left( D \right)x\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} - \dfrac{y}{x} = 2x\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P =  - \dfrac{1}{x}\] and \[Q = 2x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int { - \dfrac{1}{x}dx} }}\]

\[I.F. = {e^{ - \log x}}\]

\[I.F. = {e^{\log \dfrac{1}{x}}}\]

\[I.F. = \dfrac{1}{x}\]

Therefore, the correct option is \[\left( C \right)\] .


18. The Integrating Factor of the differential equation \[\left( {1 - {y^2}} \right)\dfrac{{dx}}{{dy}} + yx = ay\left( { - 1 < y < 1} \right)\] is

\[\left( A \right)\dfrac{1}{{{y^2} - 1}}\]

\[\left( B \right)\dfrac{1}{{\sqrt {{y^2} - 1} }}\]

\[\left( C \right)\dfrac{1}{{1 - {y^2}}}\]

\[\left( D \right)\dfrac{1}{{\sqrt {1 - {y^2}} }}\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} + \dfrac{{xy}}{{1 - {y^2}}} = \dfrac{{ay}}{{1 - {y^2}}}\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P = \dfrac{y}{{1 - {y^2}}}\] and \[Q = \dfrac{{ay}}{{1 - {y^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdy} }}\]

\[I.F. = {e^{\int {\dfrac{y}{{1 - {y^2}}}dy} }}\]

\[\]\[I.F. = {e^{\log \left( {\dfrac{1}{{\sqrt {1 - {y^2}} }}} \right)}}\]

\[I.F. = \dfrac{1}{{\sqrt {1 - {y^2}} }}\]

Therefore, the correct option is \[\left( D \right)\]


Conclusion

NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.5 offers a thorough approach to solving linear differential equations. The detailed, step-by-step solutions provided help clarify complex concepts and methods, such as using integrating factors. These solutions are designed to enhance understanding and problem-solving skills, making them a valuable resource for effective exam preparation. Download the FREE PDF to strengthen your grasp of linear differential equations and boost your confidence for upcoming exams.


Class 12 Maths Chapter 9: Exercises Breakdown

S.No.

Chapter 9 - Differential Equations Exercises in PDF Format

1

Class 12 Maths Chapter 9 Exercise 9.1 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

2

Class 12 Maths Chapter 9 Exercise 9.2 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 9 Exercise 9.3 - 12 Questions & Solutions (5 Short Answers, 5 Long Answers, 2 MCQs)

4

Class 12 Maths Chapter 9 Exercise 9.4 - 23 Questions & Solutions (10 Short Answers, 12 Long Answers, 1 MCQs)



CBSE Class 12 Maths Chapter 9 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Mathematics Chapter 9 Differential Equations – NCERT Solutions 2025-26

1. What approach should be followed to solve linear differential equations in NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.5?

To solve linear differential equations in Exercise 9.5, use the following methodical approach:

  • Identify the equation in the form dy/dx + Py = Q.
  • Calculate the integrating factor (IF).
  • Multiply the entire equation by the integrating factor.
  • Integrate both sides and add the constant of integration.
  • If initial conditions are given, substitute them to get the particular solution.
This step-by-step NCERT Solutions methodology ensures accuracy and is aligned with the CBSE marking scheme.

2. Why is the integrating factor critical in solving first-order linear differential equations?

The integrating factor transforms a first-order linear differential equation into an exact equation, allowing for straightforward integration. By multiplying both sides with the IF, the left side becomes a derivative of a product, simplifying the solution process and ensuring you derive the general solution efficiently, a key focus in NCERT Solutions for Class 12 Maths Chapter 9.

3. How can students avoid common mistakes when solving differential equations in Exercise 9.5?

To minimize errors while solving:

  • Always include the constant of integration (C) after integrating.
  • Select the correct solution method as per the type of equation.
  • Pay attention to algebraic steps and arithmetic calculations.
  • Apply initial or boundary conditions carefully for particular solutions.
  • Review definitions of order and degree before starting each problem.
This careful approach is vital for achieving full marks in board and competitive exams.

4. What is the significance of 'order' and 'degree' in differential equations according to the NCERT syllabus?

Order indicates the highest derivative present in the equation, while degree is the power of the highest order derivative after making the equation rational and free from radicals. Correctly identifying both is essential for choosing the right solution method and is commonly assessed in both board and competitive exams.

5. Which problem-solving techniques from Class 12 Maths Chapter 9 are most commonly tested in CBSE board and entrance exams?

The main techniques tested are:

  • Separation of variables
  • Integration by parts
  • Method of integrating factors for linear equations
  • Homogeneous and non-homogeneous equation strategies
Mastering these methods as outlined in the NCERT Solutions maximizes exam readiness and accuracy.

6. How do solved examples in Class 12 Maths Chapter 9 Exercise 9.5 build conceptual clarity?

The step-by-step solutions in Exercise 9.5 break down each type of differential equation, clarify the application of methods like integrating factors, and reinforce the need for correct integration and constant handling. This builds a deep understanding of the concepts and their application in exam questions.

7. In what ways do NCERT Solutions for Class 12 Maths Chapter 9 aid in preparation for JEE or NEET along with CBSE board exams?

NCERT Solutions cover fundamental problem-types and methodologies commonly asked in JEE and NEET exams. These solutions bridge conceptual understanding and exam patterns, ensuring students are prepared for both objective and descriptive scenarios, making them highly relevant for both board and entrance examinations.

8. What misconceptions do students have about integrating factors, and how can they be corrected?

Common misconceptions include:

  • Believing any function can be used as an integrating factor (only the exponential of the integral of P works).
  • Forgetting to multiply the entire equation by the integrating factor.
  • Not recognizing the exactness achieved after applying IF.
Clearing these misconceptions through stepwise NCERT Solutions explanations enhances problem-solving accuracy and conceptual clarity.

9. How should one verify if a solution to a differential equation is correct as per NCERT methodologies?

To verify your solution:

  • Substitute the obtained solution back into the original differential equation.
  • For particular solutions, ensure initial or boundary conditions are satisfied.
  • Compare your process and answer with expert-verified NCERT Solutions to ensure every critical step is addressed.
This confirms accuracy and builds confidence for CBSE board assessments.

10. What makes the NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.5 unique compared to other resources?

These solutions are crafted by expert educators strictly following the CBSE 2025–26 syllabus, provide detailed, structured, and stepwise methods, and are periodically updated for accuracy. Explanations match marking schemes and common exam patterns, making them a reliable tool for exam preparation.

11. How does the type of differential equation affect the choice of solution method in NCERT Solutions?

The classification—whether the equation is linear, homogeneous, separable, or exact—determines the preferred solution method. Linear equations require integrating factor methods, while separable equations are solved by separating and integrating variables. Choosing the correct method is crucial for full marks in CBSE board and entrance exams.

12. Why is it recommended to practice every type of problem from Exercise 9.5 in Class 12 Maths?

Practicing every type of problem ensures:

  • Exposure to all exam-pattern variations.
  • Confidence in handling both general and particular solutions.
  • Reduction of mistakes in the actual CBSE and entrance exams.
This comprehensive practice strengthens both conceptual and procedural mastery.

13. How do initial or boundary conditions change the solution strategy for a differential equation?

When an initial or boundary condition is provided, the general solution’s arbitrary constant is substituted and solved for, yielding the particular solution. This aligns the solution to specific scenarios as required in both board and competitive exams, a process emphasized in NCERT Solutions.

14. What is the general form of a first-order, first-degree differential equation according to the NCERT Class 12 syllabus?

The general form is dy/dx + P(x)y = Q(x), where P(x) and Q(x) are functions of x. Recognizing this form helps in applying correct techniques such as integrating factors, as outlined in the chapter.

15. How can understanding the method of integrating factors help in solving real-world problems modeled by differential equations?

The method of integrating factors provides a systematic process for finding exact solutions to first-order linear equations, which frequently model real-life phenomena in physics, engineering, and biology. This NCERT Solutions methodology translates mathematical theory into practical applications, a critical exam and life skill.