Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Chapter 9 Differential Equations – NCERT Solutions 2025-26

ffImage
banner

Download Free PDF of Differential Equations Exercise 9.4 Solutions for Class 12 Maths

Differential Equations form the heart of Class 12 Maths, and mastering Exercise 9.4 is essential for your CBSE board journey. Here, you will strengthen your understanding of variable separable methods and the logic behind first order, first degree equations—both directly mapped in the latest Class 12 Maths syllabus.

toc-symbolTable of Content
toggle-arrow

With a chapter weightage of 7 marks, questions from this topic appear every year. If you ever find yourself searching for “exercise 9.4 class 12”, you are aiming for reliable, stepwise NCERT solutions that remove confusion from both the method and integration steps. Here, integrating factor steps and solved differential equation examples are explained in the exact way you would apply them in board exams.


Every solution is checked for full board compliance and detailed reasoning, curated by Vedantu’s academic experts. Use this as your smart revision aid to build confidence—quickly and clearly—before your final exam.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 9 - Differential Equations

EXERCISE 9.4

Refer for exercise 9.4 in the PDF

1. Solve the differential equation \[\left( {{x^2} + xy} \right)dy = \left( {{x^2} + {y^2}} \right)dy\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2} + {y^2}}}{{{x^2} + xy}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + {{\left( {vx} \right)}^2}}}{{{x^2} + x\left( {vx} \right)}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}}}{{{x^2}}}\left( {\dfrac{{1 + {v^2}}}{{1 + v}}} \right)\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2}}}{{1 + v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2}}}{{1 + v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2} - v - {v^2}}}{{1 + v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 - v}}{{1 + v}}\]

\[dfrac{1}{x}dx = \dfrac{{1 + v}}{{1 - v}}dv\]

Taking integration on both side,

\[\int {\dfrac{1}{x}dx}  = \int {\dfrac{{1 + v}}{{1 - v}}dv} \]

\[\log x + C = \int {\dfrac{{1 + v + 1 - 1}}{{1 - v}}dv} \]

\[\log x + C = \int {\dfrac{{2 + 1 - v}}{{1 - v}}dv} \]

\[\log x + C = \int {\left( {\dfrac{2}{{1 - v}} + 1} \right)dv} \]

\[\log x + C =  - 2\log \left( {1 - v} \right) + v\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\log x + C =  - 2\log \left( {1 - \dfrac{y}{x}} \right) + \dfrac{y}{x}\]

\[\log x + \log {\left( {\dfrac{{x - y}}{x}} \right)^2} = \dfrac{y}{x} + C\]

\[\log \left[ {{{\left( {\dfrac{{x - y}}{x}} \right)}^2}x} \right] = \dfrac{y}{x} - C\]

\[{\left( {\dfrac{{x - y}}{x}} \right)^2}x = {e^{\dfrac{y}{x} - C}}\]

\[\dfrac{{{{\left( {x - y} \right)}^2}}}{x} = {e^{\dfrac{y}{x} - C}}\]

\[{\left( {x - y} \right)^2} = x{e^{\dfrac{y}{x}}}{e^{ - C}}\]

\[{\left( {x - y} \right)^2} = x{e^{\dfrac{y}{x}}}C\]

This is the required differential equation.

Where \[C = {e^{ - C}}\].

2. Solve the differential equation \[y' = \dfrac{{x + y}}{x}\]

Ans:\[\dfrac{{dy}}{{dx}} = \dfrac{{x + y}}{x}\]

On rearranging the equation, we get

\[\dfrac{{dy}}{{dx}} = 1 + \dfrac{y}{x}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = 1 + v\]

\[dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {1.dv}  = \int {\dfrac{1}{x}dx} \]

\[v = \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{y}{x} = \log x + C\]

\[y = x\log x + Cx\]

This is the required differential equation.

3. Solve the differential equation \[\left( {x - y} \right)dy = \left( {x + y} \right)dx\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{x + y}}{{x - y}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{x + vx}}{{x - vx}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{1 + v}}{{1 - v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + v}}{{1 - v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + v - v + {v^2}}}{{1 - v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{1 + {v^2}}}{{1 - v}}\]

\[\dfrac{{1 - v}}{{1 + {v^2}}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{1 - v}}{{1 + {v^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{1 + {v^2}}}} dv - \int {\dfrac{v}{{1 + {v^2}}}} dv = \int {\dfrac{1}{x}dx} ......\left( 1 \right)\]

Let \[I = \int {\dfrac{v}{{1 + {v^2}}}} dv\]

Now, let \[1 + {v^2} = t\]

Differentiating equation w.r.t. \[v\], we get

\[  2vdv = dt \] 

 \[ vdv = \dfrac{{dt}}{2} \]

Substituting \[vdv = \dfrac{{dt}}{2}\] in the above equation, we get

\[I = \int {\dfrac{1}{2t}} dt\]

Substituting this value in equation \[\left( 1 \right)\] .

Therefore,

\[\int {\dfrac{1}{{1 + {v^2}}}} dv - \int {\dfrac{1}{2t}} dt = \int {\dfrac{1}{x}dx} \]

\[{\tan ^{ - 1}}v - \dfrac{1}{2}\log t = \log x + C\]

Substituting the value of \[1 + {v^2} = t\] and \[v = \dfrac{y}{x}\] .

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) - \dfrac{1}{2}\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) = \log x + C\]

After rearranging the given equation we get,

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) - \dfrac{1}{2}\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) = \log x + C\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \log x + \dfrac{1}{2}\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) + C\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \dfrac{1}{2}\left( {2\log x + \log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right)} \right)\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \log \left( {\dfrac{{{y^2} + {x^2}}}{{{y^2}}} \times {x^2}} \right) + C\]

\[{\tan ^{ - 1}}\left( {\dfrac{x}{y}} \right) = \log \left( {{y^2} + {x^2}} \right) + C\]

This is the required differential equation.

4. Solve the differential equation \[\left( {{x^2} - {y^2}} \right)dx + 2xydy = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{{x^2} - {y^2}}}{{2xy}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{{x^2} - {{\left( {vx} \right)}^2}}}{{2x.vx}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{1 - {v^2}}}{{2v}}\]

\[x\dfrac{{dv}}{{dx}} =  - \dfrac{{1 - {v^2}}}{{2v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 + {v^2} - 2{v^2}}}{{2v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 - {v^2}}}{{2v}}\]

\[ - \dfrac{{2v}}{{1 + {v^2}}}dv = \dfrac{1}{x}dx\]

\[\dfrac{{2v}}{{1 + {v^2}}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{2v}}{{1 + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} ......\left( 1 \right)\]

Now, let \[1 + {v^2} = t\]

Differentiating equation w.r.t. \[v\], we get

\[2vdv = dt\]

Substituting \[2vdv = dt\] in equation \[\left( 1 \right)\], we get

\[\int {\dfrac{1}{t}dt}  =  - \int {\dfrac{1}{x}dx} \]

\[\log t =  - \log x + C\]

Substituting the value of \[1 + {v^2} = t\] and \[v = \dfrac{y}{x}\].

\[\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) =  - \log x + C\]

\[\log \left( {1 + \dfrac{{{y^2}}}{{{x^2}}}} \right) + \log x = C\]

\[\log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}} \times x} \right) = C\]

\[\dfrac{{{x^2} + {y^2}}}{x} = {e^C}\]

\[\dfrac{{{x^2} + {y^2}}}{x} = K\]

\[{x^2} + {y^2} = Kx\]

This is the required differential equation.

5. Solve the differential equation \[{x^2}\dfrac{{dy}}{{dx}} = {x^2} - 2{y^2} + xy\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}}= \dfrac{{x^2} - 2{y^2} + xy}{x^2}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = 1 - 2{v^2} + v\]

\[x\dfrac{{dv}}{{dx}} = 1 - 2{v^2}\]

\[\dfrac{1}{{1 - 2{v^2}}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{1 - 2{v^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{{1^2} - {{\left( {\sqrt 2 v} \right)}^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

On integrating using standard trigonometric identity we get,

\[\dfrac{1}{{\sqrt 2 }}.\dfrac{1}{{1.2}}.\log \left| {\dfrac{{1 + \sqrt 2 v}}{{1 - \sqrt 2 v}}} \right| = \log \left| x \right| + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{1}{{2\sqrt 2 }}\log \left| {\dfrac{{1 + \sqrt 2 \dfrac{y}{x}}}{{1 - \sqrt 2 \dfrac{y}{x}}}} \right| = \log \left| x \right| + C\]

\[\dfrac{1}{{2\sqrt 2 }}\log \left| {\dfrac{{x + \sqrt 2 y}}{{x - \sqrt 2 y}}} \right| = \log \left| x \right| + C\]

This is the required differential equation.

6. Solve the differential equation \[xdy - ydx = \sqrt {{x^2} + {y^2}} dx\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {{x^2} + {y^2}}  + y}}{x}\]

\[\dfrac{{dy}}{{dx}} = \sqrt {1 + \dfrac{{{y^2}}}{{{x^2}}}}  + \dfrac{y}{x}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \sqrt {1 + {v^2}}  + v\]

\[x\dfrac{{dv}}{{dx}} = \sqrt {1 + {v^2}} \]

\[\dfrac{1}{{\sqrt {1 + {v^2}} }}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{\sqrt {1 + {v^2}} }}dv}  = \int {\dfrac{1}{x}dx} \]

Using \[\int {\dfrac{1}{{\sqrt {{x^2} + {a^2}} }} = \log \left| {x + \sqrt {{x^2} + {a^2}} } \right|}  + C\], we get

\[\log \left| {v + \sqrt {1 + {v^2}} } \right| = \log x + \log C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\log \left| {\dfrac{y}{x} + \sqrt {1 + {{\left( {\dfrac{y}{x}} \right)}^2}} } \right| = \log xC\]

\[\dfrac{y}{x} + \sqrt {1 + {{\left( {\dfrac{y}{x}} \right)}^2}}  = xC\]

\[\dfrac{y}{x} + \sqrt {{{\dfrac{{{x^2} + y}}{{{x^2}}}}^2}}  = xC\]

\[\dfrac{y}{x} + \dfrac{{\sqrt {{x^2} + {y^2}} }}{x} = xC\]

\[y + \sqrt {{x^2} + {y^2}}  = C{x^2}\]

This is the required differential equation.

7. Solve the differential equation \[\left\{ {x\cos \left( {\dfrac{y}{x}} \right) + y\sin \left( {\dfrac{y}{x}} \right)} \right\}ydx = \left\{ {y\sin \left( {\dfrac{y}{x}} \right) - x\cos \left( {\dfrac{y}{x}} \right)} \right\}xdy\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{\left\{ {x\cos \left( {\dfrac{y}{x}} \right) + y\sin \left( {\dfrac{y}{x}} \right)} \right\}y}}{{\left\{ {y\sin \left( {\dfrac{y}{x}} \right) - x\cos \left( {\dfrac{y}{x}} \right)} \right\}x}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{\left\{ {x\cos \left( v \right) + vx\sin \left( v \right)} \right\}vx}}{{\left\{ {vx\sin \left( v \right) - x\cos \left( v \right)} \right\}x}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{\left\{ {\cos \left( v \right) + v\sin \left( v \right)} \right\}v}}{{\left\{ {v\sin \left( v \right) - \cos \left( v \right)} \right\}}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{v\cos \left( v \right) + {v^2}\sin \left( v \right) - {v^2}\sin \left( v \right) + v\cos \left( v \right)}}{{v\sin \left( v \right) - \cos \left( v \right)}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{2v\cos \left( v \right)}}{{v\sin \left( v \right) - \cos \left( v \right)}}\]

\[\dfrac{{v\sin \left( v \right) - \cos \left( v \right)}}{{2v\cos \left( v \right)}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{v\sin \left( v \right) - \cos \left( v \right)}}{{2v\cos \left( v \right)}}dv}  = \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{{v\sin \left( v \right)}}{{2v\cos \left( v \right)}}dv - \int {\dfrac{{\cos \left( v \right)}}{{2v\cos \left( v \right)}}dv} }  = \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\tan vdv - \dfrac{1}{2}\int {\dfrac{1}{v}dv} }  = \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\log \sec v - \dfrac{1}{2}\log v = \log x + \log C\]

\[\dfrac{1}{2}\left( {\log \sec v - \log v} \right) = \log xC\]

\[\log \dfrac{{\sec v}}{v} = 2\log xC\]

\[\log \dfrac{{\sec v}}{v} = \log {\left( {xC} \right)^2}\]

\[\dfrac{{\sec v}}{v} = {\left( {xC} \right)^2}\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{{\sec \left( {\dfrac{y}{x}} \right)}}{{\dfrac{y}{x}}} = {\left( {xC} \right)^2}\]

\[\dfrac{x}{y}\sec \left( {\dfrac{y}{x}} \right) = {\left( {xC} \right)^2}\]

\[\dfrac{x}{{y{x^2}}}.\dfrac{1}{{\cos \left( {\dfrac{y}{x}} \right)}} = {C^2}\]

\[\dfrac{1}{{yx}}.\dfrac{1}{{\cos \left( {\dfrac{y}{x}} \right)}} = {C^2}\]

\[\dfrac{1}{{{C^2}}} = yx\cos \left( {\dfrac{y}{x}} \right)\]

\[yx\cos \left( {\dfrac{y}{x}} \right) = K\]

This is the required differential equation.

8. Solve the differential equation \[x\dfrac{{dy}}{{dx}} - y + x\sin \left( {\dfrac{y}{x}} \right) = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{y - x\sin \left( {\dfrac{y}{x}} \right)}}{x}\]

\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} - \sin \left( {\dfrac{y}{x}} \right)\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx}}{x} - \sin \left( {\dfrac{{vx}}{x}} \right)\]

\[v + x\dfrac{{dv}}{{dx}} = v - \sin v\]

\[x\dfrac{{dv}}{{dx}} =  - \sin v\]

\[\dfrac{1}{{\sin v}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{\sin v}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\int {\cos ecvdv}  =  - \int {\dfrac{1}{x}dx} \]

\[\log \left( {\cos ecv - \cot v} \right) =  - \log x + \log C\]

\[\log \left( {\cos ecv - \cot v} \right) = \log \dfrac{C}{x}\]

\[\cos ecv - \cot v = \dfrac{C}{x}\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\cos ec\left( {\dfrac{y}{x}} \right) - \cot \left( {\dfrac{y}{x}} \right) = \dfrac{C}{x}\]

\[\dfrac{1}{{\sin \left( {\dfrac{y}{x}} \right)}} - \dfrac{{\cos \left( {\dfrac{y}{x}} \right)}}{{\sin \left( {\dfrac{y}{x}} \right)}} = \dfrac{C}{x}\]

\[1 - \cos \left( {\dfrac{y}{x}} \right) = \dfrac{C}{x}\sin \left( {\dfrac{y}{x}} \right)\]

\[x\left( {1 - \cos \left( {\dfrac{y}{x}} \right)} \right) = C\sin \left( {\dfrac{y}{x}} \right)\]

This is the required differential equation.

9. Solve the differential equation \[ydx + x\log \left( {\dfrac{y}{x}} \right)dy - 2xdy = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{ - y}}{{x\log \left( {\dfrac{y}{x}} \right) - 2x}}\]

\[\dfrac{{dy}}{{dx}} = \dfrac{y}{{2x - x\log \left( {\dfrac{y}{x}} \right)}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx}}{{2x - x\log \left( {\dfrac{{vx}}{x}} \right)}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{v}{{2 - \log v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{v}{{2 - \log v}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{v - 2v + v\log v}}{{2 - \log v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - v + v\log v}}{{2 - \log v}}\]

\[\dfrac{{2 - \log v}}{{ - v + v\log v}}dv = \dfrac{1}{x}dx\]

\[\dfrac{{2 - \log v}}{{v\left( {\log v - 1} \right)}}dv = \dfrac{1}{x}dx\]

\[\dfrac{{1 - \left( {\log v - 1} \right)}}{{v\left( {\log v - 1} \right)}}dv = \dfrac{1}{x}dx\]

\[\dfrac{1}{{v\left( {\log v - 1} \right)}}dv - \dfrac{{\left( {\log v - 1} \right)}}{{v\left( {\log v - 1} \right)}}dv = \dfrac{1}{x}dx\]

\[\dfrac{1}{{v\left( {\log v - 1} \right)}}dv - \dfrac{1}{v}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{v\left( {\log v - 1} \right)}}dv}  - \int {\dfrac{1}{v}dv}  = \int {\dfrac{1}{x}dx} \]                                            ………. (1)

Let \[I = \int {\dfrac{1}{{v\left( {\log v - 1} \right)}}dv} \]

Put \[\log v - 1 = t\]

Differentiating w.r.t. \[v\] .

\[\dfrac{1}{v} = \dfrac{{dt}}{{dv}}\]

\[\dfrac{1}{v}dv = dt\]

Put this value in above equation and we get

\[I = \int {\dfrac{1}{t}dt} \]

Put this in equation \[\left( 1 \right)\]

\[\int {\dfrac{1}{t}dt}  - \int {\dfrac{1}{v}dv}  = \int {\dfrac{1}{x}dx} \]

\[\log t - \log v = \log x + \log c\]

Substituting the value of \[\log v - 1 = t\] and \[v = \dfrac{y}{x}\] .

\[\log \left( {\log v - 1} \right) - \log \left( {\dfrac{y}{x}} \right) = \log x + \log c\]

\[\log \left( {\dfrac{{\log \left( {\dfrac{y}{x}} \right) - 1}}{{\left( {\dfrac{y}{x}} \right)}}} \right) = \log xC\]

\[\dfrac{{\log \left( {\dfrac{y}{x}} \right) - 1}}{{\left( {\dfrac{y}{x}} \right)}} = xC\]

\[\log \left( {\dfrac{y}{x}} \right) - 1 = \dfrac{y}{x}.xC\]

\[\log \left( {\dfrac{y}{x}} \right) - 1 = yC\]

This is the required differential equation.

10. Solve the differential equation \[\left( {1 + {e^{\dfrac{x}{y}}}} \right)dx + {e^{\dfrac{x}{y}}}\left( {1 - \dfrac{x}{y}} \right)dy = 0\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dx}}{{dy}} = \dfrac{{ - {e^{\dfrac{x}{y}}}\left( {1 - \dfrac{x}{y}} \right)}}{{1 + {e^{\dfrac{x}{y}}}}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[x = vy\]

Differentiating equation w.r.t. \[y\], we get

\[\dfrac{{dx}}{{dy}} = v + y\dfrac{{dv}}{{dy}}\]

Substituting \[x = vy\] and \[\dfrac{{dx}}{{dy}}\] in the above equation, we get

\[v + y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^{\dfrac{{vy}}{y}}}\left( {1 - \dfrac{{vy}}{y}} \right)}}{{1 + {e^{\dfrac{{vy}}{y}}}}}\]

\[v + y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v}\left( {1 - v} \right)}}{{1 + {e^v}}}\]

\[v + y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} + v{e^v}}}{{1 + {e^v}}}\]

\[y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} + v{e^v}}}{{1 + {e^v}}} - v\]

\[y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} + v{e^v} - v - v{e^v}}}{{1 + {e^v}}}\]

\[y\dfrac{{dv}}{{dy}} = \dfrac{{ - {e^v} - v}}{{1 + {e^v}}}\]

\[y\dfrac{{dv}}{{dy}} =  - \left[ {\dfrac{{{e^v} + v}}{{1 + {e^v}}}} \right]\]

\[\left[ {\dfrac{{1 + {e^v}}}{{{e^v} + v}}} \right]dv =  - \dfrac{1}{y}dy\]

Taking integration on both side,

\[\int {\left[ {\dfrac{{1 + {e^v}}}{{{e^v} + v}}} \right]dv}  =  - \int {\dfrac{1}{y}dy} \]

On integrating both side,

\[\log \left( {v + {e^v}} \right) =  - \log y + \log C\]

Substituting the value of \[v = \dfrac{x}{y}\].

\[\log \left( {\dfrac{x}{y} + {e^{\dfrac{x}{y}}}} \right) =  - \log y + \log C\]

\[\log \left( {\dfrac{x}{y} + {e^{\dfrac{x}{y}}}} \right) = \log \left( {\dfrac{C}{y}} \right)\]

\[\dfrac{x}{y} + {e^{\dfrac{x}{y}}} = \dfrac{C}{y}\]

\[x + y{e^{\dfrac{x}{y}}} = C\]

This is the required differential equation.

11. Solve the differential equation \[\left( {x + y} \right)dy + \left( {x - y} \right)dx = 0;{\text{ }}y = 1;x = 1\]

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{\left( {x - y} \right)}}{{\left( {x + y} \right)}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left( {x - vx} \right)}}{{\left( {x + vx} \right)}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left( {1 - v} \right)}}{{\left( {1 + v} \right)}}\]

\[x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left( {1 - v} \right)}}{{\left( {1 + v} \right)}} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 + v - v - {v^2}}}{{1 + v}}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{ - 1 - {v^2}}}{{1 + v}}\]

\[\dfrac{{1 + v}}{{1 + {v^2}}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{{1 + v}}{{1 + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{1 + {v^2}}}dv}  + \int {\dfrac{v}{{1 + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[{\tan ^{ - 1}}v + \dfrac{1}{2}\log \left( {1 + {v^2}} \right) =  - \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) - \dfrac{1}{2}\log \left( {1 + {{\left( {\dfrac{y}{x}} \right)}^2}} \right) =  - \log x + C\]

\[y = 1\]

When

\[x = 1\]

\[{\tan ^{ - 1}}\left( {\dfrac{1}{1}} \right) + \dfrac{1}{2}\log \left( {1 + {{\left( {\dfrac{1}{1}} \right)}^2}} \right) =  - \log 1 + C\]

\[\dfrac{\pi }{4} + \dfrac{1}{2}\log \left( 2 \right) = C\]

Therefore, the final solution becomes,

\[{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \dfrac{1}{2}\log \left( {1 + {{\left( {\dfrac{y}{x}} \right)}^2}} \right) =  - \log x + \dfrac{\pi }{4} + \dfrac{1}{2}\log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}}} \right) =  - 2\log x + 2 \times \dfrac{\pi }{4} + 2 \times \dfrac{1}{2}\log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}}} \right) =  - \log {x^2} + \dfrac{\pi }{2} + \log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}}} \right) + \log {x^2} =  + \dfrac{\pi }{2} + \log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {\dfrac{{{x^2} + {y^2}}}{{{x^2}}} \times {x^2}} \right) =  + \dfrac{\pi }{2} + \log \left( 2 \right)\]

\[2{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) + \log \left( {{x^2} + {y^2}} \right) = \dfrac{\pi }{2} + \log \left( 2 \right)\]

This is the required differential equation.

12. Solve the differential equation \[{x^2}dy + \left( {xy + {y^2}} \right)dx = 0\]; \[y = 1\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{xy + {y^2}}}{{{x^2}}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{xvx + {{\left( {xv} \right)}^2}}}{{{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{v{x^2} + {x^2}{v^2}}}{{{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} =  - v - {v^2}\]

\[x\dfrac{{dv}}{{dx}} =  - v - {v^2} - v\]

\[x\dfrac{{dv}}{{dx}} =  - 2v - {v^2}\]

\[\dfrac{1}{{2v + {v^2}}}dv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{1}{{2v + {v^2}}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\int {\dfrac{1}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

Dividing and multiplying above equation by 2.

\[\dfrac{1}{2}\int {\dfrac{2}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\dfrac{{2 + v - v}}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\dfrac{{2 + v}}{{v\left( {2 + v} \right)}}dv}  - \dfrac{1}{2}\int {\dfrac{v}{{v\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\int {\dfrac{1}{v}dv}  - \dfrac{1}{2}\int {\dfrac{1}{{\left( {2 + v} \right)}}dv}  =  - \int {\dfrac{1}{x}dx} \]

\[\dfrac{1}{2}\log v - \dfrac{1}{2}\log \left( {2 + v} \right) =  - \log x + \log C\]

\[\dfrac{1}{2}\log \left( {\dfrac{v}{{2 + v}}} \right) = \log \dfrac{C}{x}\]

\[\log \left( {\dfrac{v}{{2 + v}}} \right) = 2\log \dfrac{C}{x}\]

\[\log \left( {\dfrac{v}{{2 + v}}} \right) = \log {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{v}{{2 + v}} = {\left( {\dfrac{C}{x}} \right)^2}\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\dfrac{{\dfrac{y}{x}}}{{2 + \dfrac{y}{x}}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{{\dfrac{y}{x}}}{{\dfrac{{2x + y}}{x}}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{y}{{2x + y}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[y = 1\]

When

\[x = 1\]

\[\dfrac{1}{{2.1 + 1}} = {\left( {\dfrac{C}{1}} \right)^2}\]

\[\dfrac{1}{3} = {C^2}\]

Therefore, the final solution becomes,

\[\dfrac{y}{{2x + y}} = {\left( {\dfrac{C}{x}} \right)^2}\]

\[\dfrac{y}{{2x + y}} = \dfrac{{{C^2}}}{{{x^2}}}\]

\[\dfrac{{y{x^2}}}{{2x + y}} = {C^2}\]

\[\dfrac{{y{x^2}}}{{2x + y}} = \dfrac{1}{3}\]

\[2x + y = 3y{x^2}\]

This is the required differential equation.

13. Solve the differential equation \[\left[ {x{{\sin }^2}\left( {\dfrac{y}{x}} \right) - y} \right]dx + xdy = 0\]; \[y = \dfrac{\pi }{4}\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} =  - \dfrac{{\left[ {x{{\sin }^2}\left( {\dfrac{y}{x}} \right) - y} \right]}}{x}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} =  - \dfrac{{\left[ {x{{\sin }^2}\left( {\dfrac{{vx}}{x}} \right) - vx} \right]}}{x}\]

\[v + x\dfrac{{dv}}{{dx}} =  - {\sin ^2}\left( v \right) + v\]

\[x\dfrac{{dv}}{{dx}} =  - {\sin ^2}\left( v \right) + v - v\]

\[x\dfrac{{dv}}{{dx}} =  - {\sin ^2}\left( v \right)\]

\[\dfrac{1}{{{{\sin }^2}\left( v \right)}}dv =  - \dfrac{1}{x}dx\]

\[\cos e{c^2}vdv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\cos e{c^2}vdv}  =  - \int {\dfrac{1}{x}dx} \]

\[ - \cot v =  - \log x - \log C\]

\[\cot v = \log x + \log C\]

\[\cot v = \log xC\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[\cot \left( {\dfrac{y}{x}} \right) = \log xC\]

\[y = \dfrac{\pi }{4}\]

When

\[x = 1\]

\[\cot \left( {\dfrac{{\dfrac{\pi }{4}}}{1}} \right) = \log 1C\]

\[\cot \left( {\dfrac{\pi }{4}} \right) = \log C\]

\[1 = \log C\]

\[{e^1} = C\]

\[e = C\]

Therefore, final solution becomes,

\[\cot \left( {\dfrac{y}{x}} \right) = \log \left| {xe} \right|\]

This is the required differential equation.

14. Solve the differential equation \[\dfrac{{dy}}{{dx}} - \dfrac{y}{x} + \cos ec\left( {\dfrac{y}{x}} \right) = 0\]; \[y = 0\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} - \cos ec\left( {\dfrac{y}{x}} \right)\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx}}{x} - \cos ec\left( {\dfrac{{vx}}{x}} \right)\]

\[v + x\dfrac{{dv}}{{dx}} = v - \cos ec\left( v \right)\]

\[x\dfrac{{dv}}{{dx}} =  - \cos ec\left( v \right)\]

\[\dfrac{1}{{\cos ec\left( v \right)}}dv =  - \dfrac{1}{x}dx\]

\[\sin vdv =  - \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\sin vdv}  =  - \int {\dfrac{1}{x}dx} \]

\[ - \cos v =  - \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[ - \cos \left( {\dfrac{y}{x}} \right) =  - \log x + C\]

\[y = 0\]

When

\[x = 1\]

\[ - \cos \left( {\dfrac{0}{1}} \right) =  - \log 1 + C\]

\[ - 1 = C\]

Therefore, the final solution becomes,

\[ - \cos \left( {\dfrac{y}{x}} \right) =  - \log x - 1\]

\[\cos \left( {\dfrac{y}{x}} \right) = \log x + 1\]

\[\cos \left( {\dfrac{y}{x}} \right) = \log x + \log e\]

\[\cos \left( {\dfrac{y}{x}} \right) = \log \left| {xe} \right|\]

This is the required differential equation.

15. Solve the differential equation \[2xy + {y^2} - 2{x^2}\dfrac{{dy}}{{dx}} = 0\]; \[y = 2\] when \[x = 1\].

Ans: After rearranging the given equation we get,

\[\dfrac{{dy}}{{dx}} = \dfrac{{2xy + {y^2}}}{{2{x^2}}}\]

It is a homogeneous differential equation.

To solve this problem, we will make the substitution.

\[y = vx\]

Differentiating equation w.r.t. \[x\], we get

\[\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]

Substituting \[y = vx\] and \[\dfrac{{dy}}{{dx}}\] in the above equation, we get

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{2xvx + {{\left( {vx} \right)}^2}}}{{2{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{2{x^2}v + {v^2}{x^2}}}{{2{x^2}}}\]

\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{2v + {v^2}}}{2}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{2v + {v^2}}}{2} - v\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{2v + {v^2} - 2v}}{2}\]

\[x\dfrac{{dv}}{{dx}} = \dfrac{{{v^2}}}{2}\]

\[\dfrac{2}{{{v^2}}}dv = \dfrac{1}{x}dx\]

Taking integration on both side,

\[\int {\dfrac{2}{{{v^2}}}dv}  = \int {\dfrac{1}{x}dx} \]

\[ - \dfrac{2}{v} = \log x + C\]

Substituting the value of \[v = \dfrac{y}{x}\].

\[ - \dfrac{2}{{\dfrac{y}{x}}} = \log x + C\]

\[ - \dfrac{{2x}}{y} = \log x + C\]

\[y = 2\]

When

\[x = 1\]

\[ - \dfrac{{2.1}}{2} = \log 1 + C\]

\[ - 1 = C\]

Therefore, final solution becomes,

\[ - \dfrac{{2x}}{y} = \log x - 1\]

\[\dfrac{{2x}}{y} = 1 - \log x\]

\[y = \dfrac{{2x}}{{1 - \log x}}:x \ne e\] 

This is the required differential equation.

16. A homogeneous differential equation of the from \[\dfrac{{dx}}{{dy}} = h\left( {\dfrac{x}{y}} \right)\]can be solved by

making the substitution.

\[ \left( A \right)y = vx{\text{                      }}\left( B \right)v = yx\]

  \[\left( C \right)x = vy{\text{                      }}\left( D \right)x = v\]

Ans: As \[h\left( {\dfrac{x}{y}} \right)\] is function of \[\dfrac{x}{y}\]

Therefore, we have to substitute, \[x = vy\] .

So, the correct option is \[\left( C \right)\] .


17. Which of the following is a homogeneous differential equation?

\[\left( A \right)\left( {4x + 6y + 5} \right)dy - \left( {3y + 2x + 4} \right)dx = 0\]

\[\left( B \right)\left( {xy} \right)dx - \left( {{x^3} + {y^3}} \right)dy = 0\]

\[\left( C \right)\left( {{x^3} + 2{y^2}} \right)dx + 2xydy = 0\]

\[\left( D \right){y^2}dx + \left( {{x^2} - xy - {y^2}} \right)dy = 0\]

Ans: The correct option is \[\left( D \right)\] .

Explanation:

\[{y^2}dx + \left( {{x^2} - xy - {y^2}} \right)dy = 0\]

After rearranging the given equation we get,

\[\dfrac{{dx}}{{dy}} =  - \dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}\]

Let \[f\left( {x,y} \right) =  - \dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}\]

Now, put \[x = kx\] and \[y = ky\] 

\[f\left( {kx,ky} \right) =  - \dfrac{{{{\left( {kx} \right)}^2} - kxky - {{\left( {ky} \right)}^2}}}{{{{\left( {ky} \right)}^2}}}\]

\[f\left( {kx,ky} \right) =  - \dfrac{{{k^2}}}{{{k^2}}}\dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}\]

\[f\left( {kx,ky} \right) = {k^0}\left( { - \dfrac{{{x^2} - xy - {y^2}}}{{{y^2}}}} \right)\]

\[f\left( {kx,ky} \right) = {k^0}f\left( {x,y} \right)\]

Hence, the given differential equation is homogeneous.


Conclusion

In conclusion, Exercise 9.4 of Chapter 9, "Differential Equations," is a critical part of your understanding of differential equations, focusing on advanced methods of solving these equations. This class 12 ex 9.4 deals with higher-order differential equations and various techniques such as the method of undetermined coefficients and variation of parameters. Through consistent practice, you have strengthened your ability to approach complex differential equations methodically, applying appropriate solution strategies to each unique problem.


Class 12 Maths Chapter 9: Exercises Breakdown

S.No.

Chapter 9 - Differential Equations Exercises in PDF Format

1

Class 12 Maths Chapter 9 Exercise 9.1 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

2

Class 12 Maths Chapter 9 Exercise 9.2 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 9 Exercise 9.3 - 12 Questions & Solutions (5 Short Answers, 5 Long Answers, 2 MCQs)

4

Class 12 Maths Chapter 9 Exercise 9.5 - 17 Questions & Solutions (15 Short Answers, 2 MCQs)



CBSE Class 12 Maths Chapter 9 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Maths Chapter 9 Differential Equations – NCERT Solutions 2025-26

1. How are the NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.4 structured according to CBSE guidelines?

The solutions follow a step-by-step approach aligned with CBSE’s marking scheme. Each question begins by identifying the order and degree of the differential equation, followed by proper application of the variable separable method. All integration steps and the constant of integration are clearly shown, matching the requirements specified for 2025–26 board exams.

2. Which key concepts are reinforced by solving Exercise 9.4 in Chapter 9 Differential Equations?

Students gain mastery over homogeneous differential equations, learn how to use effective substitutions (like y = vx), and practice integration techniques. This exercise also reinforces the importance of expressing the general solution and understanding methods like separating variables, all central to both boards and entrance exams.

3. What common mistakes do students make when attempting Class 12 Maths NCERT Solutions for differential equations?

  • Skipping the step where variables are fully separated before integrating
  • Forgetting to add the constant of integration (C)
  • Not verifying solutions by differentiation
  • Misapplying standard integration formulas

Careful stepwise working and review can prevent these errors.

4. In what ways do stepwise NCERT Solutions benefit students in the board examination for Chapter 9?

Following stepwise solutions ensures that students earn marks for each part, as CBSE allocates points for every correct stage: rearrangement, separation, integration, and final answer. This approach minimizes mistakes, boosts confidence, and aligns answers with examiner expectations.

5. How should one approach solving a homogeneous differential equation in Exercise 9.4?

  • Recognize the equation as homogeneous by checking if all terms are of the same degree
  • Substitute y = vx (or x = vy if preferred)
  • Express dy/dx in terms of v and x, and rearrange to separate variables
  • Integrate both sides, include the constant of integration, and back-substitute the variables for the final solution

6. Why is mastering Exercise 9.4 important for top performance in JEE, NEET, and other competitive exams?

Direct and application-based questions from Exercise 9.4 are frequently asked in JEE and NEET. By practicing these, students internalize problem-solving strategies and develop adaptability for higher-order and time-bound problems commonly seen in entrance exams.

7. What are the typical types of differential equations covered in Class 12 Chapter 9, especially in Exercise 9.4?

  • First order, first degree differential equations
  • Homogeneous equations
  • Variable separable forms: dy/dx = f(x)g(y)
  • Equations reducible to variable separable form through substitution

8. How should students write answers to score full marks as per the CBSE marking scheme in this exercise?

Every answer should:

  • Clearly show each step of the working
  • Box the final answer
  • Include the integration constant "C"
  • Include proper substitutions and justification for each method used
  • Use correct and neat notation throughout

9. What is a misconception students may have about the variable separable method when solving NCERT solutions?

Many students mistakenly believe that variable separation can be done even when the equation isn’t in a separable form. For correct use, first confirm the equation fits the form dy/dx = f(x)g(y) before separating the variables. Applying substitutions wrongly leads to incorrect integrations and solutions.

10. How can practicing Exercise 9.4 help students prepare for university-level calculus?

By repeatedly practicing Exercise 9.4, students develop strong analytical skills in integration, mathematical modeling, and problem reduction techniques. These form the basis for advanced calculus topics, making the transition to higher studies in mathematics much smoother.