Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Class 12 Maths Differential Equations: Exercise 9.1 Detailed Solutions

ffImage
banner

Stepwise Guide to Solving Chapter 9 Exercise 9.1 Differential Equations

Differential equations are a central part of your Class 12 Mathematics journey, and mastering them can boost your confidence for exams and future studies. This set of NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.1 is designed to help you work through standard patterns, like determining the order and degree of equations and practicing formation of equations from general solutions, all fully updated as per the latest CBSE 2025 board syllabus.


Many students wonder, "Is class 12 maths very tough?" Actually, with clear, step-by-step solutions and a solid grasp of concepts such as general and particular solutions or mapping solution curves, you can handle even the trickiest board questions. Differential Equations usually carry around 7 marks in board exams, making this chapter valuable for your final score.


Use these exam-aligned solutions at your pace, and trust Vedantu's quality review process for accuracy. For detailed chapter guidelines, always cross-check with the Class 12 Maths syllabus issued by CBSE.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.1

1. Determine order and degree (if defined) of differential equation $\dfrac{{{d^4}y}}{{d{x^4}}} + \sin \left( {y'''} \right) = 0$.

Ans: The given differential equation is $\dfrac{{{d^4}y}}{{d{x^4}}} + \sin \left( {y'''} \right) = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$ \Rightarrow y'''' + \sin \left( {y'''} \right) = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y''''$, that is, $\dfrac{{{d^4}y}}{{d{x^4}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is found to be four.

Now, it is seen that, in its derivatives, the above differential equation is not a polynomial equation because of the trigonometric term involved. As a result, its degree is unknown.

Therefore, the required order of the given differential equation $\dfrac{{{d^4}y}}{{d{x^4}}} + \sin \left( {y'''} \right) = 0$ is found to be four and the degree is unknown. 


2. Determine order and degree (if defined) of differential equation $y' + 5y = 0$.

Ans: The given differential equation is $y' + 5y = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow y' + 5y = 0$

$\Rightarrow \dfrac{{dy}}{{dx}} + 5y = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y'$, that is, $\dfrac{{dy}}{{dx}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is found to be one.

Now, it is seen that the given differential equation is a polynomial equation in $y'$, thus, the highest power that is raised to $y'$ is 1. 

Hence, the degree of the given differential equation is found to be one.

Therefore, the required order of the given differential equation $y' + 5y = 0$ is obtained as one and the degree is also found to be one. 


3. Determine order and degree (if defined) of differential equation ${\left( {\dfrac{{ds}}{{dt}}} \right)^4} + 3s\dfrac{{{d^2}s}}{{d{t^2}}} = 0$.

Ans: The given differential equation is ${\left( {\dfrac{{ds}}{{dt}}} \right)^4} + 3s\dfrac{{{d^2}s}}{{d{t^2}}} = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$ \Rightarrow {\left( {\dfrac{{ds}}{{dt}}} \right)^4} + 3s\dfrac{{{d^2}s}}{{d{t^2}}} = 0$

$\Rightarrow {\left( {s'} \right)^4} + 3s\left( {s''} \right) = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $s''$, that is, $\dfrac{{{d^2}s}}{{d{t^2}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is obtained as two.

Now, it is seen that, the given differential equation is a polynomial equation in $\dfrac{{{d^2}s}}{{d{t^2}}}$ and $\dfrac{{ds}}{{dt}}$, thus, the highest power that is raised to $\dfrac{{{d^2}s}}{{d{t^2}}}$ is 1. 

Hence, the degree of the given differential equation is found to be one.

Therefore, the required order of the given differential equation ${\left( {\dfrac{{ds}}{{dt}}} \right)^4} + 3s\dfrac{{{d^2}s}}{{d{t^2}}} = 0$ is obtained as two and the degree is also found to be one. 


4. Determine order and degree (if defined) of differential equation ${\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^2} + \cos \left( {\dfrac{{dy}}{{dx}}} \right) = 0$.

Ans: The given differential equation is ${\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^2} + \cos \left( {\dfrac{{dy}}{{dx}}} \right) = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$ \Rightarrow {\left( {y''} \right)^2} + \cos \left( {y'} \right) = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y''$, that is, $\dfrac{{{d^2}y}}{{d{x^2}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is obtained as two.

Now, it is seen that, in its derivatives, the above differential equation is not a polynomial equation because of the trigonometric term involved. As a result, its degree is unknown.

Therefore, the required order of the given differential equation ${\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^2} + \cos \left( {\dfrac{{dy}}{{dx}}} \right) = 0$ is found as two and the degree is unknown. 


5. Determine order and degree (if defined) of differential equation $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\cos 3x+\sin 3x$.

Ans: The given differential equation is $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\cos 3x+\sin 3x$.

It is known that the differential expression $\dfrac{dy}{dx}$ can be expressed as $y'$, the differential expression $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\cos 3x+\sin 3x$

$\Rightarrow y''=\cos 3x+\sin 3x$

$\Rightarrow y''-\left( \cos 3x+\sin 3x \right)=0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y''$, that is, $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is two.

Now, it is seen that the given differential equation is a polynomial equation in $y''$, thus, the highest power that is raised to $y''$ is 1.

Hence, the degree of the given differential equation is obtained one.

Therefore, the order of the differential equation $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\cos 3x+\sin 3x$ is found as two and the degree is found to be one. 


6. Determine order and degree (if defined) of differential equation ${\left( {y'''} \right)^2} + {\left( {y''} \right)^3} + {\left( {y'} \right)^4} + {y^5} = 0$.

Ans: The given differential equation is ${\left( {y'''} \right)^2} + {\left( {y''} \right)^3} + {\left( {y'} \right)^4} + {y^5} = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow {\left( {y'''} \right)^2} + {\left( {y''} \right)^3} + {\left( {y'} \right)^4} + {y^5} = 0$

$\Rightarrow {\left( {\dfrac{{{d^3}y}}{{d{x^3}}}} \right)^2} + {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^3} + {\left( {\dfrac{{dy}}{{dx}}} \right)^4} + {y^5} = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y'''$, that is, $\dfrac{{{d^3}y}}{{d{x^3}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is obtained as three.

Now, it is seen that the given differential equation is a polynomial equation in $y'''$,$y''$ and $y'$, thus, the highest power that is raised to $y'''$ is 2. 

Hence, the degree of the given differential equation is obtained as two.

Therefore, the required order of the given differential equation ${\left( {y'''} \right)^2} + {\left( {y''} \right)^3} + {\left( {y'} \right)^4} + {y^5} = 0$ is found as three and the degree is also found to be two.


7. Determine order and degree (if defined) of differential equation $y''' + 2y'' + y' = 0$.

Ans: The given differential equation is $y''' + 2y'' + y' = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow y''' + 2y'' + y' = 0$

$\Rightarrow \dfrac{{{d^3}y}}{{d{x^3}}} + 2\dfrac{{{d^2}y}}{{d{x^2}}} + \dfrac{{dy}}{{dx}} = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y'''$, that is, $\dfrac{{{d^3}y}}{{d{x^3}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is obtained as three.

Now, it is seen that the given differential equation is a polynomial equation in $y'''$,$y''$ and $y'$, thus, the highest power that is raised to $y'''$ is 1. 

Hence, the degree of the given differential equation is found to be one.

Therefore, the required order of the given differential equation $y''' + 2y'' + y' = 0$ is three and the degree is also found to be one. 


8. Determine order and degree (if defined) of differential equation $y' + y = e'$.

Ans: The given differential equation is $y' + y = e'$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow y' + y = e'$

$\Rightarrow y' + y - e' = 0$

$\Rightarrow \left( {\dfrac{{dy}}{{dx}}} \right) + y - e' = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y'$, that is, $\dfrac{{dy}}{{dx}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is obtained asone.

Now, it is seen that the given differential equation is a polynomial equation in $y'$, thus, the highest power that is raised to $y'$ is 1. 

Hence, the degree of the given differential equation is found to be one.

Therefore, the required order of the given differential equation $y' + y = e'$ is obtained as one and the degree is also found to be one. 


9. Determine order and degree (if defined) of differential equation $y''+{{\left( y' \right)}^{2}}+2y=0$.

Ans: The given differential equation is $y''+{{\left( y' \right)}^{2}}+2y=0$.

It is known that the differential expression $\dfrac{dy}{dx}$ can be expressed as $y'$, the differential expression $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow y''+{{\left( y' \right)}^{2}}+2y=0$

$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}+{{\left( \dfrac{dy}{dx} \right)}^{2}}+2y=0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y''$, that is, $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is found to be two.

Now, it is seen that the given differential equation is a polynomial equation in $y''$ and $y'$,thus, the highest power that is raised to $y''$ is 1.

Hence, the degree of the given differential equation is found to be one.

Therefore, the order of the differential equation $y''+{{\left( y' \right)}^{2}}+2y=0$ is obtained as two and the degree is also found to be one. 


10. Determine order and degree (if defined) of differential equation $y'' + 2y' + \sin y = 0$.

Ans: The given differential equation is $y'' + 2y' + \sin y = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow y'' + 2y' + \sin y = 0$

$\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + 2\left( {\dfrac{{dy}}{{dx}}} \right) + \sin y = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y''$, that is, $\dfrac{{{d^2}y}}{{d{x^2}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is found to be two.

Now, it is seen that the given differential equation is a polynomial equation in $y''$ and $y'$, thus, the highest power that is raised to $y''$ is 1. 

Hence, the degree of the given differential equation is found to be one.

Therefore, the required order of the given differential equation $y'' + 2y' + \sin y = 0$ is obtained as two and the degree is found to be one. 


11. Determine degree (if defined) of differential equation ${\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^3} + {\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \sin \left( {\dfrac{{dy}}{{dx}}} \right) + 1 = 0$ is 

(A) 3

(B) 2

(C) 1

(D) Not defined

Ans: The given differential equation is ${\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^3} + {\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \sin \left( {\dfrac{{dy}}{{dx}}} \right) + 1 = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^3} + {\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \sin \left( {\dfrac{{dy}}{{dx}}} \right) + 1 = 0$

$\Rightarrow {\left( {y''} \right)^3} + {\left( {y'} \right)^2} + \sin \left( {y'} \right) + 1 = 0$

It is seen that, in its derivatives, the above differential equation is not a polynomial equation because of the trigonometric term involved. As a result, its degree is not defined or unknown.

Therefore, the degree of the differential equation ${\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)^3} + {\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \sin \left( {\dfrac{{dy}}{{dx}}} \right) + 1 = 0$ is not defined or unknown. Hence, the correct answer is found to be (D).


12. Determine order of the differential equation $2{x^2}\dfrac{{{d^2}y}}{{d{x^2}}} + 3\dfrac{{dy}}{{dx}} + y = 0$

(A) 2

(B) 1

(C) 0

(D) Not defined

Ans: The given differential equation is $2{x^2}\dfrac{{{d^2}y}}{{d{x^2}}} + 3\dfrac{{dy}}{{dx}} + y = 0$.

It is known that the differential expression $\dfrac{{dy}}{{dx}}$ can be expressed as $y'$, the differential expression $\dfrac{{{d^2}y}}{{d{x^2}}}$  is $y''$, and so on.

Thus, above equation can also be rearranged and written as follows,

$\Rightarrow 2{x^2}\dfrac{{{d^2}y}}{{d{x^2}}} + 3\dfrac{{dy}}{{dx}} + y = 0$

$\Rightarrow 2{x^2}\left( {y''} \right) + 3\left( {y'} \right) + y = 0$

It can be observed from the above equation that the highest order derivative that is present in the differential equation is $y''$, that is, $\dfrac{{{d^2}y}}{{d{x^2}}}$.

The order of the differential equation is determined as the highest order of the derivative present in that differential equation.

Hence, the order of the given differential equation is found to be two.

Therefore, the required order of the given differential equation $2{x^2}\dfrac{{{d^2}y}}{{d{x^2}}} + 3\dfrac{{dy}}{{dx}} + y = 0$ is found to be 2. Hence, option (A) is found to be the correct answer.


NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.1

Opting for the NCERT solutions for Ex 9.1 Class 12 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 9.1 Class 12 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 12 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 12 Maths Chapter 9 Exercise 9.1 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.1, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 

Do not delay any more. Download the NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.1 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

Class 12 Maths Chapter 9: Exercises Breakdown

S.No.

Chapter 9 - Differential Equations Exercises in PDF Format

1

Class 12 Maths Chapter 9 Exercise 9.2 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

2

Class 12 Maths Chapter 9 Exercise 9.3 - 12 Questions & Solutions (5 Short Answers, 5 Long Answers, 2 MCQs)

3

Class 12 Maths Chapter 9 Exercise 9.4 - 23 Questions & Solutions (10 Short Answers, 12 Long Answers, 1 MCQs)

4

Class 12 Maths Chapter 9 Exercise 9.5 - 17 Questions & Solutions (15 Short Answers, 2 MCQs)



CBSE Class 12 Maths Chapter 9 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on Class 12 Maths Differential Equations: Exercise 9.1 Detailed Solutions

1. Where can I find reliable, step-by-step NCERT Solutions for Class 12 Maths Chapter 9, Differential Equations?

You can find comprehensive and expert-verified NCERT Solutions for Class 12 Maths Chapter 9 on Vedantu. These solutions are crafted to provide clear, step-by-step explanations for every problem in the textbook, strictly following the CBSE 2025-26 syllabus and marking scheme to help students understand the correct methodology for solving differential equations.

2. How do you determine the order and degree of a differential equation as per the NCERT guidelines?

To determine the order and degree of a differential equation, follow these two steps:

  • Order: The order is the highest order of the derivative present in the equation. For example, in the equation d²y/dx² + y = 0, the highest order derivative is d²y/dx², so the order is 2.
  • Degree: The degree is the highest power of the highest order derivative, provided the equation is a polynomial in its derivatives. In (d²y/dx²)³ + dy/dx = 0, the degree is 3. If the equation contains terms like sin(dy/dx), the degree is not defined.

3. What is the correct method to solve a differential equation using variable separation?

The variable separable method is used when the differential equation can be expressed in the form f(x)dx = g(y)dy. The step-by-step method is as follows:

  1. Rearrange the equation to separate all terms involving 'x' and 'dx' on one side, and all terms involving 'y' and 'dy' on the other.
  2. Integrate both sides of the equation independently.
  3. Add a single constant of integration, 'C', to one side of the equation to get the general solution.

4. How are homogeneous differential equations solved in the Class 12 NCERT solutions?

A differential equation is homogeneous if it can be written as dy/dx = F(y/x). The standard procedure to solve it is:

  • Substitute y = vx. This implies that dy/dx = v + x(dv/dx).
  • Substitute these into the original equation, which will transform it into a new equation with variables 'v' and 'x'.
  • This new equation will be solvable using the variable separation method.
  • Solve for 'v' and then substitute back v = y/x to get the final solution in terms of 'x' and 'y'.

5. What is the step-by-step process for solving a linear differential equation of the form dy/dx + Py = Q?

To solve a linear differential equation, follow these precise steps:

  1. First, identify the functions P and Q from the equation, ensuring it matches the standard form dy/dx + P(x)y = Q(x).
  2. Calculate the Integrating Factor (I.F.) using the formula: I.F. = e∫P dx.
  3. The general solution is then found using the standard result: y × (I.F.) = ∫(Q × I.F.) dx + C, where C is the constant of integration.

6. Why is the degree of a differential equation 'not defined' if it contains a term like sin(dy/dx)?

The concept of 'degree' applies only to differential equations that are polynomials in their derivatives (like y'', y', etc.). A function like sin(dy/dx) is a transcendental function. When expanded using a Maclaurin series, it becomes an infinite series of powers of dy/dx. Since a polynomial must have a finite number of terms and a finite highest power, the equation is not a polynomial in its derivatives, and thus its degree cannot be defined.

7. What is the fundamental difference between a general solution and a particular solution of a differential equation?

The key difference lies in the presence of arbitrary constants:

  • A general solution contains one or more arbitrary constants (like 'C'). It represents a family of curves that all satisfy the differential equation. The number of constants equals the order of the equation.
  • A particular solution is derived from the general solution by using given initial conditions (e.g., y=2 when x=1) to find specific values for the arbitrary constants. It represents a single, unique curve from the family of solutions.

8. How can a student quickly identify if a differential equation is variable separable, homogeneous, or linear?

Here is a quick checklist to identify the type of first-order, first-degree differential equation:

  • Variable Separable: Check if you can algebraically move all 'x' terms to one side with 'dx' and all 'y' terms to the other side with 'dy'.
  • Homogeneous: Check if the equation can be expressed as a function of y/x or if every term in the equation has the exact same degree. For example, in y² + x² = xy(dy/dx), all terms have a degree of 2.
  • Linear: Check if the equation can be perfectly structured into the form dy/dx + P(x)y = Q(x) or dx/dy + P(y)x = Q(y). If it fits this template, it is linear.

Always check in this order, as some equations might fit multiple criteria, but one method may be simpler.

9. How do you form a differential equation from a given general solution containing arbitrary constants?

To form a differential equation from a solution, the goal is to eliminate the arbitrary constants. The correct procedure is:

  1. Count the number of independent arbitrary constants in the given equation. Let's say there are 'n' constants.
  2. Differentiate the equation successively 'n' times. This will give you 'n' new equations in addition to the original one.
  3. Use these (n+1) equations to algebraically eliminate the 'n' constants.
  4. The resulting equation, which is free of arbitrary constants, is the required differential equation. Its order will be 'n'.