Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Step-by-Step Solutions: Class 12 Maths Vector Algebra Exercise 10.4

ffImage
banner

How to Solve All Questions in Exercise 10.4 (Class 12 Vector Algebra)

Mastering the concepts in NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.4 gives you a strong grip on vector algebra. This exercise explores both the scalar (dot) product and vector (cross) product, helping you understand how vectors interact and support key geometrical applications. Many students search for “exercise 10.4 class 12” before exams and want clear, step-by-step logic to avoid errors under pressure.

toc-symbolTable of Content
toggle-arrow

With up to 7 marks allotted to Vector Algebra in the board exam, scoring here can make a real difference in your final result. By practicing vector projections, understanding magnitude and direction, and learning when to use each vector product, you'll boost your confidence for calculations in mathematics and beyond. These topics also build a foundation for tackling coordinate geometry and 3D problems in your board papers.


All the explanations reflect the latest CBSE 2025 syllabus, so you revise only what truly matters for your exam. The expert-verified steps provided by Vedantu will help clarify doubts and strengthen your problem-solving skills, supporting you right up to your exam day.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 10 - Vector Algebra

Exercise 10.4

1. Find$\left| \overrightarrow{\mathbf{a}}\mathbf{\times }\overrightarrow{\mathbf{b}} \right|$, if $\overrightarrow{\mathbf{a}}\mathbf{=}\widehat{\mathbf{i}}\mathbf{-7}\widehat{\mathbf{j}}\mathbf{+7}\widehat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}\mathbf{=3}\widehat{\mathbf{i}}\mathbf{-2}\widehat{\mathbf{j}}\mathbf{+2}\widehat{\mathbf{k}}$

Ans: The given vectors are 

$\overrightarrow{\text{a}}\text{=}\widehat{\text{i}}\text{-7}\widehat{\text{j}}\text{+7}\widehat{\text{k}}$ and $\overrightarrow{\text{b}}\text{=3}\widehat{\text{i}}\text{-2}\widehat{\text{j}}\text{+2}\widehat{\text{k}}$.

Then the cross-product between the vectors is given by

\[{\vec{a}\times\vec{b}=\begin{vmatrix} \hat{i} & \hat{j}& k\\ 1 & -7 & 7 \\ 3& -2 & 2 \\ \end{vmatrix}}\]

 $ =\widehat{i}\left( -14+14 \right)+-\widehat{j}\left( 2-21 \right)+\widehat{k}\left( -2+21 \right) $ 

 $ =19\widehat{j}+19\widehat{k}. $ 

Therefore,

$ \left| \overrightarrow{a}\times \overrightarrow{b} \right|=\sqrt{{{19}^{2}}+{{19}^{2}}} $ 

 $ =\sqrt{2\times {{19}^{2}}} $ 

 $=19\sqrt{2}. $ 


2. Find a unit vector perpendicular to each of the vector $\overrightarrow{\mathbf{a}}\mathbf{+}\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}\mathbf{-}\overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{a}}\mathbf{=3}\widehat{\mathbf{i}}\mathbf{+2}\widehat{\mathbf{j}}\mathbf{+2}\widehat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}\mathbf{=}\widehat{\mathbf{i}}\mathbf{+2}\widehat{\mathbf{j}}\mathbf{-2}\widehat{\mathbf{k}}$.

Ans: The given vectors are

$\overrightarrow{\text{a}}\text{=3}\widehat{\text{i}}\text{+2}\widehat{\text{j}}\text{+2}\widehat{\text{k}}$ and $\overrightarrow{\text{b}}\text{=}\widehat{\text{i}}\text{+2}\widehat{\text{j}}\text{-2}\widehat{\text{k}}$.

Then, adding and subtracting the vectors successively, we have

$\overrightarrow{a}+\overrightarrow{b}=4\widehat{i}+4\widehat{j}$ and $\overrightarrow{a}-\overrightarrow{b}=2\widehat{i}+4\widehat{k}$.

Therefore, their cross-product,

$\left( \overrightarrow{a}+\overrightarrow{b} \right)\times \left( \overrightarrow{a}-\overrightarrow{b} \right)=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \\ \end{matrix} \right| $

 $ =16\widehat{i}-16\widehat{j}-8\widehat{k}. $ 

Then, its magnitude,

$ \left| \left( \overrightarrow{a}+\overrightarrow{b} \right)\times \left( \overrightarrow{a}-\overrightarrow{b} \right) \right|=\sqrt{{{16}^{2}}+{{\left( -16 \right)}^{2}}+{{\left( -8 \right)}^{2}}} $ 

 $=\sqrt{{{2}^{2}}\times {{8}^{2}}+{{2}^{2}}\times {{8}^{2}}+{{8}^{2}}} $ 

 $ =8\sqrt{{{2}^{2}}+{{2}^{2}}+1} $ 

 $ =8\sqrt{9} $ 

 $ =8\times 3 $ 

 $ =24. $ 

Thus, the unit vector perpendicular to each of the vectors $\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{a}-\overrightarrow{b}$

is provided as,

$ =\pm \frac{\left( \overrightarrow{a}+\overrightarrow{b} \right)\left( \overrightarrow{a}-\overrightarrow{b} \right)}{\left| \left( \overrightarrow{a}+\overrightarrow{b} \right)\left( \overrightarrow{a}-\overrightarrow{b} \right) \right|} $ 

 $ =\pm \frac{16\widehat{i}-16\widehat{j}-8\widehat{k}}{24} $ 

 $ =\pm \frac{2\widehat{i}-2\widehat{j}-\widehat{k}}{3} $ 

 $ =\pm \frac{2}{3}\widehat{i}\,\mp \frac{2}{3}\widehat{j}\,\,\mp \frac{1}{3}\widehat{k} $ 


3. If a unit vector $\overrightarrow{\mathbf{a}}$ makes angles $\frac{\mathbf{\pi }}{\mathbf{3}}$  with $\overrightarrow{\mathbf{i}}\mathbf{,}\,\frac{\mathbf{\pi }}{\mathbf{4}}$ with $\overrightarrow{\mathbf{j}}$ and an acute angle $\mathbf{\theta }$ with $\widehat{\mathbf{k}}$, then find $\mathbf{\theta }$ and hence, the components of $\overrightarrow{\mathbf{a}}$.

Ans: Suppose the components of the given unit vector $\overrightarrow{a}$ is $\left( {{a}_{1}},{{a}_{2}},{{a}_{3}} \right)$.

Then, $\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}$.

Also, $\left| \overrightarrow{a} \right|=1$ as $\overrightarrow{a}$ is a unit vector.

Again, we are provided that, the vector $\overrightarrow{\text{a}}$ makes angles $\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$  with $\overrightarrow{\text{i}}\text{,}\,\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}$ with $\overrightarrow{\text{j}}$ and an acute angle $\text{ }\!\!\theta\!\!\text{ }$ with $\widehat{\text{k}}$. Therefore, it gives

\[\cos \frac{\pi }{3}=\frac{{{a}_{1}}}{\left| \overrightarrow{a} \right|}\]

\[\Rightarrow \frac{1}{2}={{a}_{1}}\], since $\overrightarrow{a}$ is a unit vector.

Also, 

$\cos \frac{\pi }{4}=\frac{{{a}_{2}}}{\left| \overrightarrow{a} \right|}$

$\Rightarrow \frac{1}{\sqrt{2}}={{a}_{2}}$, since $\overrightarrow{a}$ is a unit vector.

Now, let

$\cos \theta =\frac{{{a}_{3}}}{\left| \overrightarrow{a} \right|}$.

$\Rightarrow {{a}_{3}}=\cos \theta $

Since, $\left| \overrightarrow{a} \right|=1$, so

$ \Rightarrow \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=1 $ 

 $ \Rightarrow {{\left( \frac{1}{2} \right)}^{2}}+{{\left( \frac{1}{\sqrt{2}} \right)}^{2}}+{{\cos }^{2}}\theta =1 $ 

 $ \Rightarrow \frac{1}{4}+\frac{1}{2}+{{\cos }^{2}}\theta =1 $ 

 $ \Rightarrow \frac{3}{4}+{{\cos }^{2}}\theta =1 $ 

 $ \Rightarrow {{\cos }^{2}}\theta =1-\frac{3}{4}=\frac{1}{4} $ 

 $ \Rightarrow \cos \theta =\frac{1}{2} $ 

$\Rightarrow \theta =\frac{\pi }{3}$

Thus, ${{a}_{3}}=\cos \frac{\pi }{3}=\frac{1}{2}$.

Therefore, $\theta =\frac{\pi }{3}$ and the components of the vector $\overrightarrow{a}$ are $\left( \frac{1}{2},\,\frac{1}{\sqrt{2}},\frac{1}{2} \right)$.


4. Show that

$\left( \overrightarrow{\mathbf{a}}\mathbf{-}\overrightarrow{\mathbf{b}} \right)\mathbf{\times }\left( \overrightarrow{\mathbf{a}}\mathbf{+}\overrightarrow{\mathbf{b}} \right)\mathbf{=2}\left( \overrightarrow{\mathbf{a}}\mathbf{+}\overrightarrow{\mathbf{b}} \right)$.

Ans: The given cross-product can be written as

$\left( \overrightarrow{\text{a}}\text{-}\overrightarrow{\text{b}} \right)\text{ }\!\!\times\!\!\text{ }\left( \overrightarrow{\text{a}}\text{+}\overrightarrow{\text{b}} \right)$

$=\left( \overrightarrow{a}-\overrightarrow{b} \right)\times \overrightarrow{a}+\left( \overrightarrow{a}-\overrightarrow{b} \right)\times \overrightarrow{b}$, (using the distributive property of vector product over addition)

$=\overrightarrow{a}\times \overrightarrow{a}-\overrightarrow{b}\times \overrightarrow{a}+\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{b}\times \overrightarrow{b}$, (Distributive property of vector product over addition)

$=\overrightarrow{0}+\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{0} $ 

 $ =2\overrightarrow{a}\times \overrightarrow{b}. $ 


5. Find $\mathbf{\lambda }$ and $\mathbf{\mu }$ if $\left( \mathbf{2}\widehat{\mathbf{i}}\mathbf{+6}\widehat{\mathbf{j}}\mathbf{+27}\widehat{\mathbf{k}} \right)\mathbf{\times }\left( \widehat{\mathbf{i}}\mathbf{+\lambda }\widehat{\mathbf{j}}\mathbf{+\mu }\widehat{\mathbf{k}} \right)\mathbf{=}\overrightarrow{\mathbf{0}}$.

Ans: The given vector equation can be written as,

$\left( \text{2}\widehat{\text{i}}\text{+6}\widehat{\text{j}}\text{+27}\widehat{\text{k}} \right)\text{ }\!\!\times\!\!\text{ }\left( \widehat{\text{i}}\text{+ }\!\!\lambda\!\!\text{ }\widehat{\text{j}}\text{+ }\!\!\mu\!\!\text{ }\widehat{\text{k}} \right)\text{=}\overrightarrow{\text{0}}$

$\Rightarrow \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k}\\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{matrix} \right|=0\widehat{i}+0\widehat{j}+0\widehat{k}$

$\Rightarrow \widehat{i}\left( 6\mu -27\lambda  \right)-\widehat{j}\left( 2\mu \,-27 \right)+\widehat{k}\left( 2\lambda -6 \right)=0\widehat{i}+0\widehat{j}+0\widehat{k}$

Now, compare the scalar components both sides of the equation.

Then, it yields

$6\mu -27\lambda =0$                              …… (i)

$2\mu -27=0$                                …… (ii)

$2\lambda -6=0$                                  …… (iii)

Hence, on solving the equations (i), (ii), and (iii), we obtain

$\lambda =3$ and $\mu =\frac{27}{2}$.


6. Given that $\overrightarrow{\mathbf{a}}\cdot \overrightarrow{\mathbf{b}}\mathbf{=0}$ and $\overrightarrow{\mathbf{a}}\mathbf{\times }\overrightarrow{\mathbf{b}}\mathbf{=0}$.

What can you conclude about the vector $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$?

Ans: Since, $\overrightarrow{a}\cdot \overrightarrow{b}=0$, then we can say that

either $\left| \overrightarrow{a} \right|=0$, or $\left| \overrightarrow{b} \right|=0$, or the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular to each other.

Again, since $\overrightarrow{a}\times \overrightarrow{b}=0$, so it can be said that

either $\left| \overrightarrow{a} \right|=0$, or $\left| \overrightarrow{b} \right|=0$, or the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are parallel to each other.

But, since the vectors cannot be perpendicular and parallel at simultaneous, so the only possibility is either $\left| \overrightarrow{a} \right|=0$ or $\left| \overrightarrow{b} \right|=0$.


7. Let the vectors $\overrightarrow{\mathbf{a}}\mathbf{,}\,\,\overrightarrow{\mathbf{b}}\mathbf{,}\,\,\overrightarrow{\mathbf{c}}$ given as ${{\mathbf{a}}_{\mathbf{1}}}\widehat{\mathbf{i}}\mathbf{+}{{\mathbf{a}}_{\mathbf{2}}}\widehat{\mathbf{j}}\mathbf{+}{{\mathbf{a}}_{\mathbf{3}}}\widehat{\mathbf{k}}\mathbf{,}\,\,\,{{\mathbf{b}}_{\mathbf{1}}}\widehat{\mathbf{i}}\mathbf{+}{{\mathbf{b}}_{\mathbf{2}}}\widehat{\mathbf{j}}\mathbf{+}{{\mathbf{b}}_{\mathbf{3}}}\widehat{\mathbf{k}}\mathbf{,}\,\,{{\mathbf{c}}_{\mathbf{1}}}\widehat{\mathbf{i}}\mathbf{+}{{\mathbf{c}}_{\mathbf{2}}}\widehat{\mathbf{j}}\mathbf{+}{{\mathbf{c}}_{\mathbf{3}}}\widehat{\mathbf{k}}$

Then show that $\overrightarrow{\mathbf{a}}\mathbf{\times }\left( \overrightarrow{\mathbf{b}}\mathbf{+}\overrightarrow{\mathbf{c}} \right)\mathbf{=}\overrightarrow{\mathbf{a}}\mathbf{\times }\overrightarrow{\mathbf{b}}\mathbf{+}\overrightarrow{\mathbf{a}}\mathbf{\times }\overrightarrow{\mathbf{c}}$.

Ans: The given vectors are

$\overrightarrow{\text{a}}\text{=}{{\text{a}}_{\text{1}}}\widehat{\text{i}}\text{+}{{\text{a}}_{\text{2}}}\widehat{\text{j}}\text{+}{{\text{a}}_{\text{3}}}\widehat{\text{k}}$, 

$\overrightarrow{\text{b}}\text{=}{{\text{b}}_{\text{1}}}\widehat{\text{i}}\text{+}{{\text{b}}_{\text{2}}}\widehat{\text{j}}\text{+}{{\text{b}}_{\text{3}}}\widehat{\text{k}}$,

$\overrightarrow{\text{c}}\text{=}{{\text{c}}_{\text{1}}}\widehat{\text{i}}\text{+}{{\text{c}}_{\text{2}}}\widehat{\text{j}}\text{+}{{\text{c}}_{\text{3}}}\widehat{\text{k}}$.

So, $\left( \overrightarrow{b}+\overrightarrow{c} \right)=\left( {{b}_{1}}+{{c}_{1}} \right)\widehat{i}+\left( {{b}_{2}}+{{c}_{2}} \right)\widehat{j}+\left( {{b}_{3}}+{{c}_{3}} \right)\widehat{k}$

Then,

$ \overrightarrow{a}\times \left( \overrightarrow{b}+\overrightarrow{c} \right)=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k}\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\ {{b}_{1}}+{{c}_{1}} & {{b}_{2}}+{{c}_{2}} & {{b}_{3}}+{{c}_{3}} \end{matrix} \right| $

 $=\widehat{i}\left[ {{a}_{2}}\left( {{b}_{3}}+{{c}_{3}} \right)-{{a}_{3}}\left( {{b}_{2}}+{{c}_{2}} \right) \right]-\widehat{j}\left[ {{a}_{1}}\left( {{b}_{3}}+{{c}_{3}} \right)-{{a}_{3}}\left( {{b}_{1}}+{{c}_{1}} \right) \right]+\widehat{k}\left[ {{a}_{1}}\left( {{b}_{2}}+{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}+{{c}_{1}} \right) \right]$ $ =\widehat{i}\left( {{a}_{2}}{{b}_{3}}+{{a}_{2}}{{c}_{3}}-{{a}_{3}}{{b}_{2}}-{{a}_{3}}{{c}_{2}} \right)+\widehat{j}\left( -{{a}_{1}}{{b}_{3}}-{{a}_{1}}{{c}_{3}}+{{a}_{3}}{{b}_{1}}+{{a}_{3}}{{c}_{1}} \right) $ 

 $ \,\,\,\,+\widehat{k}\left( {{a}_{1}}{{b}_{2}}+{{a}_{1}}{{c}_{2}}-{{a}_{2}}{{b}_{1}}-{{a}_{2}}{{c}_{1}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\text{ (i)} $ 

Therefore, 

\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \end{matrix} \right|\]

\[=\widehat{i}\left( {{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}} \right)+\widehat{j}\left( {{a}_{3}}{{b}_{1}}-{{a}_{1}}{{b}_{3}} \right)+\widehat{k}\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)\]          …… (ii)

Also,

$\overrightarrow{a}\times \overrightarrow{c}=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\ {{c}_{1}} & {{c}_{2}} & {{c}_{3}} \end{matrix} \right|$

$=\widehat{i}\left( {{a}_{2}}{{c}_{3}}-{{a}_{3}}{{c}_{2}} \right)+\widehat{j}\left( {{a}_{3}}{{c}_{1}}-{{a}_{1}}{{c}_{3}} \right)+\widehat{k}\left( {{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}} \right)$             …… (iii)

Now, add the equations (ii) and (iii). Then, it yields

$\left( \overrightarrow{a}\times \overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{c} \right)=\widehat{i}\left( {{a}_{2}}{{b}_{3}}+{{a}_{2}}{{c}_{3}}-{{a}_{3}}{{b}_{2}}-{{a}_{3}}{{c}_{2}} \right)+\widehat{j}\left( {{b}_{1}}{{a}_{3}}+{{a}_{3}}{{c}_{1}}-{{a}_{1}}{{b}_{3}}-{{a}_{1}}{{c}_{3}} \right) $ 

 $ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\widehat{k}\left( {{a}_{1}}{{b}_{2}}+{{a}_{1}}{{c}_{2}}-{{a}_{2}}{{b}_{1}}-{{a}_{2}}{{c}_{1}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\text{ (iv)} $ 

 

Then, the equations (i) and (iv) together implies that

$\overrightarrow{a}\times \left( \overrightarrow{b}+\overrightarrow{c} \right)=\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}$.

Thus, the required result has been proved.


8. If either $\overrightarrow{\mathbf{a}}\mathbf{=}\overrightarrow{\mathbf{0}}$ or $\overrightarrow{\mathbf{b}}\mathbf{=}\overrightarrow{\mathbf{0}}$, then $\overrightarrow{\mathbf{a}}\mathbf{\times }\overrightarrow{\mathbf{b}}\mathbf{=}\overrightarrow{\mathbf{0}}$.

Is the converse true? Justify your answer with an example.

Ans: Consider any parallel non-zero vectors so that $\overrightarrow{\text{a}}\text{ }\!\!\times\!\!\text{ }\overrightarrow{\text{b}}\text{=}\overrightarrow{\text{0}}$.

So, take the nonzero vectors \[\overrightarrow{a}=2\widehat{i}+3\widehat{j}+4\widehat{k}\] and $\overrightarrow{b}=4\widehat{i}+6\widehat{j}+8\widehat{k}$.

Therefore, the cross-product between the vectors,

$ \overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{matrix} \right| $ 

 $=\widehat{i}\left( 24-24 \right)-\widehat{j}\left( 16-16 \right)+\widehat{k}\left( 12-12 \right) $ 

 $ =0\widehat{i}+0\widehat{j}+0\widehat{k}. $ 

Then, the magnitudes of the vectors are given by

$\left| \overrightarrow{a} \right|=\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}=\sqrt{29}$ and

$\left| \overrightarrow{b} \right|=\sqrt{{{4}^{2}}+{{6}^{2}}+{{8}^{2}}}=\sqrt{116}.$

Thus, observing the above results, it is found that $\overrightarrow{\text{a}}\text{ }\!\!\times\!\!\text{ }\overrightarrow{\text{b}}\text{=}\overrightarrow{\text{0}}$, while $\overrightarrow{a}\ne \overrightarrow{0}$ and $\overrightarrow{b}\ne \overrightarrow{0}$.

Therefore, it is justified that the converse of the given statement need not be true.

 

9. Find the area of the triangle with vertices $\mathbf{A}\left( \mathbf{1,1,2} \right)\mathbf{,}\,\,\mathbf{B}\left( \mathbf{2,3,5} \right)$ and $\mathbf{C}\left( \mathbf{1,5,5} \right)$.

Ans: The triangle $ABC$ has the vertices $\text{A}\left( \text{1,1,2} \right)\text{,}\,\,\text{B}\left( \text{2,3,5} \right)$ and $\text{C}\left( \text{1,5,5} \right)$.

The adjacent sides of the triangle $\Delta \,ABC$ are $\overrightarrow{AB}$ and $\overrightarrow{BC}$ such that

\[\overrightarrow{AB}=\left( 2-1 \right)\widehat{i}+\left( 3-1 \right)\widehat{j}+\left( 5-2 \right)\widehat{k}=\widehat{i}+2\widehat{j}+3\widehat{k}\] and

$\overrightarrow{BC}=\left( 1-2 \right)\widehat{i}+\left( 5-3 \right)\widehat{j}+\left( 5-5 \right)\widehat{k}=-\widehat{i}+2\widehat{j}$.

Now, the cross-product between the vectors is given by

$\overrightarrow{AB}\times \overrightarrow{BC}=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{matrix} \right| $

 $ =\widehat{i}\left( -6 \right)-\widehat{j}\left( 3 \right)+\widehat{k}\left( 2+2 \right) $ 

 $ =-6\widehat{i}-3\widehat{j}+4\widehat{k}. $ 

Therefore,

$ \left| \overrightarrow{AB}\times \overrightarrow{BC} \right|=\sqrt{{{\left( -6 \right)}^{2}}+{{\left( -3 \right)}^{2}}+{{4}^{2}}} $ 

 $ =\sqrt{36+9+16} $ 

 $ =\sqrt{61}. $ 

Thus, the area of the triangle $\Delta \,ABC$ 

$=\frac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{BC} \right|$

$=\frac{1}{2}\times \sqrt{61}$

$=\frac{\sqrt{61}}{2}$ square units.


10. Find the area of the parallelogram whose adjacent sides are determined by the vector \[\overrightarrow{\mathbf{a}}\mathbf{=}\widehat{\mathbf{i}}\mathbf{-}\widehat{\mathbf{j}}\mathbf{+3}\widehat{\mathbf{k}}\] and $\overrightarrow{\mathbf{b}}\mathbf{=2}\widehat{\mathbf{i}}\mathbf{-7}\widehat{\mathbf{j}}\mathbf{+}\widehat{\mathbf{k}}$.

Ans: The given vectors are \[\overrightarrow{\text{a}}\text{=}\widehat{\text{i}}\text{-}\widehat{\text{j}}\text{+3}\widehat{\text{k}}\] and $\overrightarrow{\text{b}}\text{=2}\widehat{\text{i}}\text{-7}\widehat{\text{j}}\text{+}\widehat{\text{k}}$ such that they are the adjacent sides of the parallelogram.

Therefore, the cross-product between the vectors,

$\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{matrix} \right| $

 $ =\widehat{i}\left( -1+21 \right)-\widehat{j}\left( 1-6 \right)+\widehat{k}\left( -7+2 \right) $ 

 $ =20\widehat{i}+5\widehat{j}-5\widehat{k}. $ 

Therefore, its magnitude,

$ \left| \overrightarrow{a}\times \overrightarrow{b} \right|=\sqrt{{{20}^{2}}+{{5}^{2}}+{{5}^{2}}} $ 

 $ =\sqrt{400+25+25} $ 

 $ =15\sqrt{2}. $ 

Thus, the area of the parallelogram is $15\sqrt{2}$ square units.


11. Let the vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be such that $\left| \overrightarrow{\mathbf{a}} \right|\mathbf{=3}$ and $\left| \overrightarrow{\mathbf{b}} \right|\mathbf{=}\frac{\sqrt{\mathbf{2}}}{\mathbf{3}}$, then $\overrightarrow{\mathbf{a}}\mathbf{\times }\overrightarrow{\mathbf{b}}$ is a unit vector, if the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is

(a) $\frac{\mathbf{\pi }}{\mathbf{6}}$        (b) $\frac{\mathbf{\pi }}{\mathbf{4}}$          (c) $\frac{\mathbf{\pi }}{\mathbf{3}}$             (d) $\frac{\mathbf{\pi }}{\mathbf{2}}$

Ans: We are provided that, $\left| \overrightarrow{a} \right|=3$ and $\left| \overrightarrow{b} \right|=\frac{\sqrt{2}}{3}$.

Now, it is generally known that $\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin \theta \cdot \widehat{n}$, where $\widehat{n}$ is a unit vector that is perpendicular to both the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$; $\theta $ is the angle the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$. 

Since, $\overrightarrow{a}\times \overrightarrow{b}$ is a unit vector, so $\left| \overrightarrow{a}\times \overrightarrow{b} \right|=1$

$ \Rightarrow \left| \left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin \theta \widehat{n} \right|=1 $ 

$ \Rightarrow \left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\left| \sin \theta  \right|=1 $ 

$ \Rightarrow 3\times \frac{\sqrt{2}}{3}\times \sin \theta =1 $ 

$\Rightarrow \sin \theta =\frac{1}{\sqrt{2}} $ 

 $ \Rightarrow \theta =\frac{\pi }{4}. $ 

Thus, the angle between the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ is $\frac{\pi }{4}$.

Hence, the correct answer is option (b).


12. Area of a rectangle having vertices $\mathbf{A}$, $\mathbf{B}$, $\mathbf{C}$, and $\mathbf{D}$ with position vectors $\mathbf{-}\widehat{\mathbf{i}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{2}}\widehat{\mathbf{j}}\mathbf{+4}\widehat{\mathbf{k}}\mathbf{,}\,\,\widehat{\mathbf{i}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{2}}\widehat{\mathbf{j}}\mathbf{+4}\widehat{\mathbf{k}}\mathbf{,}\,\,\widehat{\mathbf{i}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{2}}\widehat{\mathbf{j}}\mathbf{+4}\widehat{\mathbf{k}}$ and $\mathbf{-}\widehat{\mathbf{i}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{2}}\widehat{\mathbf{j}}\mathbf{+4}\widehat{\mathbf{k}}$ respectively is

(a) $\frac{\mathbf{1}}{\mathbf{2}}$           (b) $\mathbf{1}$               (c) $\mathbf{2}$                  (d) $\mathbf{4}$

Ans: The position vectors of the vertices $A,\,\,B,\,\,C,\,\,D$ of the rectangle $ABCD$ are such that 

$\overrightarrow{OA}=-\widehat{i}+\frac{1}{2}\widehat{j}+4\widehat{k}$,

$\overrightarrow{OB}=\widehat{i}+\frac{1}{2}\widehat{j}+4\widehat{k}$,

$\overrightarrow{OC}=\widehat{i}-\frac{1}{2}\widehat{j}+4\widehat{k}$, and

$\overrightarrow{OD}=-\widehat{i}-\frac{1}{2}\widehat{j}+4\widehat{k}$.

The adjacent sides of the rectangle $ABCD$ are $\overrightarrow{AB}$ and $\overrightarrow{BC}$ such that

$\overrightarrow{AB}=\left( 1+1 \right)\widehat{i}+\left( \frac{1}{2}-\frac{1}{2} \right)\widehat{j}+\left( 4-4 \right)\widehat{k}=2\widehat{j}$

$\overrightarrow{BC}=\left( 1-1 \right)\widehat{i}+\left( -\frac{1}{2}-\frac{1}{2} \right)\widehat{j}+\left( 4-4 \right)\widehat{k}=-\widehat{j}$.

Therefore, the cross-product between these two vectors,

$\overrightarrow{AB}\times \overrightarrow{BC}=\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0 \end{matrix} \right| $

 $ =\widehat{k}\left( -2 \right) $ 

 $ =-2\widehat{k}. $ 

Since, the area of a parallelogram having the adjacent sides $\overrightarrow{a}$ and $\overrightarrow{b}$ is $\left| \overrightarrow{a}\times \overrightarrow{b} \right|$, so the area of the rectangle $ABCD$ is $\left| \overrightarrow{AB}\times \overrightarrow{CD} \right|=2$ square units.

Thus, the correct answer is the option (c).


Conclusion

In Class 12 Maths Ex 10.4 Solutions, we focus on the vector (or cross) product of two vectors, a fundamental concept in vector algebra. By working through the problems, we have learned how to calculate the cross product and understand its significance, including its magnitude, direction, and various properties. In class 12 ex 10.4, we have seen how the cross product can be used to solve practical problems, such as finding the area of parallelograms and determining the torque in physics. Mastering these concepts enhances our understanding of three-dimensional geometry and prepares us for more advanced applications in mathematics, physics, and engineering.


Class 12 Maths Chapter 10: Exercises Breakdown

S.No.

Chapter 10 - Vector Algebra Exercises in PDF Format

1

Class 12 Maths Chapter 10 Exercise 10.1 - 5 Questions & Solutions (5 Short Answers)

2

Class 12 Maths Chapter 10 Exercise 10.2 - 19 Questions & Solutions (5 Short Answers, 14 Long Answers)

3

Class 12 Maths Chapter 10 Exercise 10.3 - 18 Questions & Solutions (5 Short Answers, 13 Long Answers)

4

Class 12 Maths Chapter 10 Miscellaneous Exercise - 19 Questions & Solutions



CBSE Class 12 Maths Chapter 10 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on Step-by-Step Solutions: Class 12 Maths Vector Algebra Exercise 10.4

1. What is the correct method to solve cross product problems in NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra?

To solve cross product problems in Class 12 Maths Vector Algebra, always use the determinant formula.

  • Write both vectors in component form: a = a₁i + a₂j + a₃k, b = b₁i + b₂j + b₃k
  • Set up and expand the 3x3 determinant:
a × b = |i    j     k| 
           a₁  a₂  a₃
           b₁  b₂  b₃
  • Solve stepwise and write the resulting vector in the form pi + qj + rk.
This gives a vector perpendicular to both input vectors.

2. Why is following the step-by-step NCERT solution approach important for Vector Algebra problems?

Using a stepwise solution ensures that all calculations are accurate and each formula application is clear. This approach helps you avoid mistakes in sign or direction, which is crucial for vector cross products. It also matches CBSE board marking schemes and develops logical problem-solving skills for exam success.

3. How do I distinguish between when to use a scalar (dot) product and a vector (cross) product in Class 12 Maths Chapter 10?

  • Use a scalar (dot) product when the question asks for a number representing projection or work (e.g., a · b = |a||b|cosθ).
  • Use a vector (cross) product when you need a new vector perpendicular to two others, such as in area or torque problems (e.g., a × b = |a||b|sinθ n̂).
Always read the question type and apply the matching formula accordingly.

4. What common mistakes should I avoid while solving vector product questions in Exercise 10.4?

Students often make the following mistakes:

  • Switching the order of vectors (a × b ≠ b × a, it is anti-commutative).
  • Incorrect expansion of the determinant, especially with sign errors.
  • Missing the unit vector or not fully simplifying the answer.
Always check the direction using the right-hand rule and verify calculations carefully.

5. What is the importance of mastering cross product concepts for scoring in CBSE and for JEE preparations?

Mastering cross product concepts is essential because:

  • They directly carry weightage in the CBSE Board – typically carrying 5-7 marks per exam.
  • The understanding is foundational to advanced mathematics, physics, and engineering topics in competitive exams like JEE.
  • Many vector problems in entrance exams use cross and dot products interchangeably, so clear conceptual clarity means more marks and fewer mistakes.

6. How do NCERT Solutions for Class 12 Maths Chapter 10 help in last-minute exam revision?

NCERT Solutions offer concise, step-by-step, exam-focused answers for each question type. This format helps you quickly revise formulas, typical question types, and common errors. Use these solutions for fast reference to build speed and confidence before your board or JEE exam.

7. What is the formula for the cross product of two vectors and how should it be applied in CBSE board questions?

The cross product of two vectors a and b is given by a × b = |a||b|sinθ n̂, where n̂ is a unit vector perpendicular to both a and b. For board exams, always write out:

  • The components of both vectors.
  • The determinant form for the calculation.
  • Final boxed vector answer with direction clearly stated.

8. If the cross product of two nonzero vectors is zero, what does it indicate and why is this an important check in vector algebra?

If a × b = 0 but neither a nor b are zero vectors, this means the vectors are parallel (they lie along the same or exactly opposite direction). This check helps identify if certain geometric configurations (like collinear points or parallel lines) exist in problems, and is a common conceptual trap in board and JEE exams.

9. When is it necessary to find the magnitude of the cross product and how do you interpret it in physical terms?

The magnitude of the cross product, |a × b|, is needed when calculating quantities like area (of parallelograms/triangles) or torque. Physically, it represents the size of the region or the turning effect, while the direction is given by the right-hand rule. Always use |a × b| = |a||b|sinθ for calculation.

10. Can NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra be used independently for board exam preparation?

Yes, NCERT Solutions for Class 12 Maths Chapter 10 are fully aligned with the latest CBSE (2025–26) syllabus and marking schemes. These solutions provide stepwise logic, cover all exam-relevant question types, and build a strong foundation for both board and competitive exams.

11. How does the distributive property work for cross products in vector algebra problems?

The distributive property for cross products is: a × (b + c) = a × b + a × c. This property helps break complex vector expressions into manageable parts and is often used in exam questions to simplify multi-term cross products. Always expand using this rule for clarity and accuracy in CBSE board answers.

12. What should I do if I get a negative vector as an answer in the cross product calculation?

A negative vector simply means the resultant points in the opposite direction compared to the positive result, as per the right-hand rule. Carefully box the answer and make sure your direction matches the expected perpendicular vector. Marks are awarded for correct sign and direction, so include both in your solution steps.