Master Class 10 Introduction To Trigonometry Exercise 8.1 Solutions With Clear Step By Step Explanations
NCERT Solutions for Class 10 Maths Chapter 8, Introduction to Trigonometry, Exercise 8.1, is available here in PDF format. The solutions can be downloaded easily and can be referred by the students from anywhere. The NCERT solutions created by our subject experts are explained in a step-by-step procedure along with the related geometric figure. The solutions are prepared per the latest NCERT syllabus and guidelines of the CBSE board and it aims to help the students to excel in their board and competitive examination.


Glance on NCERT Solutions Maths Chapter 8 Exercise 8.1 Class 10 | Vedantu
This article deals with Trigonometry which is the branch of mathematics that is related to the specific functions of angles and their application to calculations.
There are six functions of an angle that are widely used in trigonometry to solve unknown sides. Their six functions of trigonometry and their abbreviations are sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (cosec).
Trigonometry is a concept that represents the relation between the angles and sides of a right-angled triangle.
Understanding the concept of right-angled triangles and their components (perpendicular, base, hypotenuse).
Determining missing angles using trigonometric ratios and inverse trigonometric functions and missing side lengths in a right triangle when one side length and a trigonometric ratio are given.
NCERT Solutions For Class 10 Maths Chapter 8 Introduction To Trigonometry
Master Class 10 Introduction To Trigonometry Exercise 8.1 Solutions With Clear Step By Step Explanations
1. In $\Delta ABC$ right angled at $B$, $AB=24\text{ cm}$, $BC=7\text{ cm}$. Determine
i) $\sin A,\cos A$
Ans: Given that in the right angle triangle $\Delta ABC$, $AB=24\text{ cm}$, $BC=7\text{ cm}$.
Let us draw a right triangle $\Delta ABC$, also $AB=24\text{ cm}$, $BC=7\text{ cm}$. We get
We have to find $\sin A,\cos A$.
We know that for right triangle
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ and
$\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
Here, $AB=24\text{ cm}$, $BC=7\text{ cm}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( 24 \right)}^{2}}+{{\left( 7 \right)}^{2}}$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}=576+49$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}=625\text{ }c{{m}^{2}}$
$\Rightarrow AC=25\text{ cm}$
Now,
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$
$\Rightarrow \sin A=\dfrac{BC}{AC}$
$\therefore \sin A=\dfrac{7}{25}$
$\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
$\Rightarrow \cos A=\dfrac{AB}{AC}$
$\therefore \cos A=\dfrac{24}{25}$
ii) $\sin C,\cos C$
Ans: Given that in the right angle triangle $\Delta ABC$, $AB=24\text{ cm}$, $BC=7\text{ cm}$.
Let us draw a right triangle $\Delta ABC$, also $AB=24\text{ cm}$, $BC=7\text{ cm}$. We get
We have to find $\sin C,\cos C$.
We know that for right triangle
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ and
$\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
Here, $AB=24\text{ cm}$, $BC=7\text{ cm}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( 24 \right)}^{2}}+{{\left( 7 \right)}^{2}}$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}=576+49$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}=625\text{ }c{{m}^{2}}$
$\Rightarrow AC=25\text{ cm}$
Now,
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$
$\Rightarrow \sin C=\dfrac{AB}{AC}$
$\therefore \sin C=\dfrac{24}{25}$
$\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
$\Rightarrow \cos C=\dfrac{BC}{AC}$
$\therefore \cos A=\dfrac{7}{25}$
2. In the given figure find $\tan P-\cot R$.
Ans: Given in the figure,
$PQ=12\text{ cm}$
$PQ=13\text{ cm}$
We know that for right triangle
$\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$ and
$\cot \theta =\dfrac{\text{adjacent side}}{\text{opposite side}}$
Now, we need to apply the Pythagoras theorem to find the measure of adjacent side/base.
In $\Delta PQR$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( PR \right)}^{2}}={{\left( PQ \right)}^{2}}+{{\left( QR \right)}^{2}}$
$\Rightarrow {{\left( 13 \right)}^{2}}={{\left( 12 \right)}^{2}}+{{\left( QR \right)}^{2}}$
$\Rightarrow 169=144+{{\left( QR \right)}^{2}}$
$\Rightarrow {{\left( QR \right)}^{2}}=169-144$
$\Rightarrow {{\left( QR \right)}^{2}}=25\text{ }c{{m}^{2}}$
$\Rightarrow QR=5\text{ cm}$
Now,
$\tan P=\dfrac{\text{opposite side}}{\text{adjacent side}}$
$\Rightarrow \tan P=\dfrac{QR}{PQ}$
$\therefore \tan P=\dfrac{5}{12}$
$\cot R=\dfrac{\text{adjacent side}}{\text{opposite side}}$
$\Rightarrow \cot R=\dfrac{QR}{PQ}$
$\therefore \cot R=\dfrac{5}{12}$
$\Rightarrow \tan P-\cot R=\dfrac{5}{12}-\dfrac{5}{12}$
$\therefore \tan P-\cot R=0$
3. If $\sin A=\dfrac{3}{4}$, calculate $\cos A$ and $\tan A$.
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $\sin A=\dfrac{3}{4}$.
We know that $\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$.
From the above figure, we get
$\sin A=\dfrac{BC}{AC}$
Therefore, we get
$\Rightarrow BC=3$ and
$\Rightarrow AC=4$
Now, we have to find the values of $\cos A$ and $\tan A$.
We know that $\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ and $\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$.
Now, we need to apply the Pythagoras theorem to find the measure of adjacent side/base.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
Here, $AC=4\text{ cm}$, $BC=3\text{ cm}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow {{4}^{2}}=A{{B}^{2}}+{{3}^{2}}$
$\Rightarrow 16=A{{B}^{2}}+9$
$\Rightarrow A{{B}^{2}}=16-9$
$\Rightarrow A{{B}^{2}}=7$
$\Rightarrow AB=\sqrt{7}\text{ cm}$
Now, we get
$\cos A=\dfrac{AB}{AC}$
$\therefore \cos A=\dfrac{\sqrt{7}}{4}$
And $\tan A=\dfrac{BC}{AB}$
$\therefore \tan A=\dfrac{3}{\sqrt{7}}$
4. Given $15\cot A=8$. Find $\sin A$ and $\sec A$.
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $15\cot A=8$.
We get $\cot A=\dfrac{8}{15}$.
We know that $\cot \theta =\dfrac{\text{adjacent side}}{\text{opposite side}}$.
From the above figure, we get
$\cot A=\dfrac{AB}{BC}$
Therefore, we get
$\Rightarrow BC=15$ and
$\Rightarrow AB=8$
Now, we have to find the values of $\sin A$ and $\sec A$.
We know that $\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ and $\sec \theta =\dfrac{\text{hypotenuse}}{\text{adjacent side}}$.
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow A{{C}^{2}}={{8}^{2}}+{{15}^{2}}$
$\Rightarrow A{{C}^{2}}=64+225$
$\Rightarrow A{{C}^{2}}=289$
$\Rightarrow AC=17\text{ cm}$
Now, we get
$\sin A=\dfrac{BC}{AC}$
$\therefore \sin A=\dfrac{15}{17}$
And $\sec A=\dfrac{AC}{AB}$
$\therefore \sec A=\dfrac{17}{8}$
5. Given $\sec \theta =\dfrac{13}{12}$, calculate all other trigonometric ratios.
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $\sec \theta =\dfrac{13}{12}$.
We know that $\sec \theta =\dfrac{\text{hypotenuse}}{\text{adjacent side}}$.
From the above figure, we get
$\sec \theta =\dfrac{AC}{AB}$
Therefore, we get
$\Rightarrow AC=13$ and
$\Rightarrow AB=12$
Now, we need to apply the Pythagoras theorem to find the measure of the perpendicular/opposite side.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow {{13}^{2}}={{12}^{2}}+B{{C}^{2}}$
$\Rightarrow 169=144+B{{C}^{2}}$
$\Rightarrow B{{C}^{2}}=25$
$\Rightarrow BC=5\text{ cm}$
Now, we know that
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$
Here, $\sin \theta =\dfrac{BC}{AC}$
$\therefore \sin \theta =\dfrac{5}{13}$
We know that $\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
Here, $\cos \theta =\dfrac{AB}{AC}$
$\therefore \cos \theta =\dfrac{12}{13}$
We know that $\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$
Here, $\tan \theta =\dfrac{BC}{AB}$
$\therefore \tan \theta =\dfrac{5}{12}$
We know that $\operatorname{cosec}\theta =\dfrac{\text{hypotenuse}}{\text{opposite side}}$
Here, $\operatorname{cosec}\theta =\dfrac{AC}{BC}$
$\therefore \operatorname{cosec}\theta =\dfrac{13}{5}$
We know that $\cot \theta =\dfrac{\text{adjacent side}}{\text{opposite side}}$
Here, $\cot \theta =\dfrac{\text{AB}}{BC}$
\[\therefore \cot \theta =\dfrac{12}{5}\].
6. If $\angle A$ and $\angle B$ are acute angles such that $\cos A=\cos B$, then show that $\angle A=\angle B$.
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $\cos A=\cos B$.
In a right triangle $\Delta ABC$, we know that
$\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
Here,
$\cos A=\dfrac{AC}{AB}$
And $\cos B=\dfrac{BC}{AB}$
As given $\cos A=\cos B$, we get
$\Rightarrow \dfrac{AC}{AB}=\dfrac{BC}{AB}$
$\Rightarrow AC=AB$
Now, we know that angles opposite to the equal sides are also equal in measure.
Then, we get
$\angle A=\angle B$
Hence proved.
7. Evaluate the following if $\cot \theta =\dfrac{7}{8}$
i) $\dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}$
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Now, in a right triangle we know that $\cot \theta =\dfrac{\text{adjacent side}}{\text{opposite side}}$.
Here, from the figure $\cot \theta =\dfrac{BC}{AB}$ .
We get
$AB=8$ and
$BC=7$
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{8}^{2}}+{{7}^{2}}$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}=64+49$
$\Rightarrow {{\left( \text{AC} \right)}^{2}}=113$
$\Rightarrow AC=\sqrt{113}$
Now, we know that
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$
Here, we get
$\sin \theta =\dfrac{AB}{AC}=\dfrac{8}{\sqrt{113}}$ and
$\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$
Here, we get
$\cos \theta =\dfrac{BC}{AC}=\dfrac{7}{\sqrt{113}}$
Now, we have to evaluate
$\dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}$
Applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}=\dfrac{1-{{\sin }^{2}}\theta }{1-{{\cos }^{2}}\theta }\]
Substituting the values, we get
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}=\dfrac{1-{{\left( \dfrac{8}{\sqrt{113}} \right)}^{2}}}{1-{{\left( \dfrac{7}{\sqrt{113}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}=\dfrac{1-\dfrac{64}{113}}{1-\dfrac{49}{113}}\]
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}=\dfrac{\dfrac{113-64}{113}}{\dfrac{113-49}{113}}\]
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}=\dfrac{\dfrac{49}{113}}{\dfrac{64}{113}}\]
\[\therefore \dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}{\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)}=\dfrac{49}{64}\]
ii) ${{\cot }^{2}}\theta $
Ans: Given that $\cot \theta =\dfrac{7}{8}$.
Now, ${{\cot }^{2}}\theta ={{\left( \dfrac{7}{8} \right)}^{2}}$
$\therefore {{\cot }^{2}}\theta =\dfrac{49}{64}$
8. If $3\cot A=4$, check whether $\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A$ or not.
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $3\cot A=4$.
We get $\cot A=\dfrac{4}{3}$.
We know that $\cot \theta =\dfrac{\text{adjacent side}}{\text{opposite side}}$.
From the above figure, we get
$\cot A=\dfrac{AB}{BC}$
Therefore, we get
$\Rightarrow BC=3$ and
$\Rightarrow AB=4$
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow A{{C}^{2}}={{4}^{2}}+{{3}^{2}}$
$\Rightarrow A{{C}^{2}}=16+9$
$\Rightarrow A{{C}^{2}}=25$
$\Rightarrow AC=5$
Now, let us consider LHS of the expression $\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A$, we get
$LHS=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}$
Now, we know that $\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$
Here, we get
$\tan A=\dfrac{BC}{AB}=\dfrac{3}{4}$
Substitute the value, we get
$\Rightarrow \dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}=\dfrac{1-{{\left( \dfrac{3}{4} \right)}^{2}}}{1+{{\left( \dfrac{3}{4} \right)}^{2}}}$
$\Rightarrow \dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}=\dfrac{1-\dfrac{9}{16}}{1+\dfrac{9}{16}}$
$\Rightarrow \dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}=\dfrac{\dfrac{16-9}{16}}{\dfrac{16+9}{16}}$
$\Rightarrow \dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}=\dfrac{\dfrac{7}{16}}{\dfrac{25}{16}}$
$\Rightarrow \dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}=\dfrac{7}{25}$
Now, let us consider RHS of the expression $\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A$, we get
$RHS={{\cos }^{2}}A-{{\sin }^{2}}A$
We know that $\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ and $\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$.
Here, we get
$\sin A=\dfrac{BC}{AC}=\dfrac{3}{5}$
And $\cos A=\dfrac{AB}{AC}=\dfrac{4}{5}$
Substitute the values, we get
$\Rightarrow {{\cos }^{2}}A-{{\sin }^{2}}A={{\left( \dfrac{4}{5} \right)}^{2}}-{{\left( \dfrac{3}{5} \right)}^{2}}$
$\Rightarrow {{\cos }^{2}}A-{{\sin }^{2}}A=\dfrac{16}{25}-\dfrac{9}{25}$
$\Rightarrow {{\cos }^{2}}A-{{\sin }^{2}}A=\dfrac{7}{25}$
Hence, we get LHS=RHS
$\therefore \dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A$.
9. In $ABC$, right angled at $B$. If $\tan A=\dfrac{1}{\sqrt{3}}$, find the value of
i) $\sin A\cos C+\cos A\sin C$
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $\tan A=\dfrac{1}{\sqrt{3}}$.
In a right triangle, we know that $\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$
Here, from the figure we get
$\tan A=\dfrac{BC}{AB}=\dfrac{1}{\sqrt{3}}$
We get $BC=1$ and $AB=\sqrt{3}$ .
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow A{{C}^{2}}={{\left( \sqrt{3} \right)}^{2}}+{{1}^{2}}$
$\Rightarrow A{{C}^{2}}=3+1$
$\Rightarrow A{{C}^{2}}=4$
$\Rightarrow AC=2$
We know that $\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ and $\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$.
Here, we get
$\sin A=\dfrac{BC}{AC}=\dfrac{1}{2}$ and $\sin C=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{2}$
And $\cos A=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{2}$and $\cos C=\dfrac{BC}{AC}=\dfrac{1}{2}$
Now, we have to find the value of the expression $\sin A\cos C+\cos A\sin C$.
Substituting the values we get
$\Rightarrow \sin A\cos C+\cos A\sin C=\dfrac{1}{2}\times \dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow \sin A\cos C+\cos A\sin C=\dfrac{1}{4}+\dfrac{3}{4}$
$\Rightarrow \sin A\cos C+\cos A\sin C=\dfrac{4}{4}$
$\therefore \sin A\cos C+\cos A\sin C=1$
ii) $\cos A\cos C-\sin A\sin C$
Ans: Let us consider a right angled triangle $\Delta ABC$. We get
Given that $\tan A=\dfrac{1}{\sqrt{3}}$.
In a right triangle, we know that $\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$
Here, from the figure we get
$\tan A=\dfrac{BC}{AB}=\dfrac{1}{\sqrt{3}}$
We get $BC=1$ and $AB=\sqrt{3}$ .
Now, we need to apply the Pythagoras theorem to find the measure of hypotenuse.
In $\Delta ABC$, by Pythagoras theorem ,
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( \text{AC} \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}$
$\Rightarrow A{{C}^{2}}={{\left( \sqrt{3} \right)}^{2}}+{{1}^{2}}$
$\Rightarrow A{{C}^{2}}=3+1$
$\Rightarrow A{{C}^{2}}=4$
$\Rightarrow AC=2$
We know that $\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ and $\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$.
Here, we get
$\sin A=\dfrac{BC}{AC}=\dfrac{1}{2}$ and $\sin C=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{2}$
And $\cos A=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{2}$and $\cos C=\dfrac{BC}{AC}=\dfrac{1}{2}$
Now, we have to find the value of the expression $\cos A\cos C-\sin A\sin C$.
Substituting the values we get
$\Rightarrow \cos A\cos C-\sin A\sin C=\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}-\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow \cos A\cos C-\sin A\sin C=\dfrac{\sqrt{3}}{4}-\dfrac{\sqrt{3}}{4}$
$\therefore \Rightarrow \cos A\cos C-\sin A\sin C=0$
10. In $\Delta PQR$, right angled at $Q$, $PR+QR=25\text{ cm}$ and $PQ=5\text{ cm}$. Determine the values of $\sin P,\cos P$ and $\tan P$.
Ans: Let us consider a right angled triangle $\Delta PQR$, we get
Given that $PR+QR=25\text{ cm}$ and $PQ=5\text{ cm}$.
Let $QR=25-PR$
Now, applying the Pythagoras theorem in $\Delta PQR$, we get
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( base \right)}^{2}}+{{\left( perpendicular \right)}^{2}}$
We get
$\Rightarrow {{\left( PR \right)}^{2}}={{\left( PQ \right)}^{2}}+{{\left( QR \right)}^{2}}$
$\Rightarrow P{{R}^{2}}={{5}^{2}}+{{\left( 25-PR \right)}^{2}}$
$\Rightarrow P{{R}^{2}}=25+{{25}^{2}}+P{{R}^{2}}-50PR$
$\Rightarrow P{{R}^{2}}=P{{R}^{2}}+25+625-50PR$
$\Rightarrow 50PR=650$
$\Rightarrow PR=13\text{ cm}$
Therefore,
$QR=25-13$
$\Rightarrow QR=12\text{ cm}$
Now, we know that in right triangle,
$\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$, $\cos \theta =\dfrac{\text{adjacent side}}{\text{hypotenuse}}$ and $\tan \theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$.
Here, we get
$\sin P=\dfrac{QR}{PR}$
$\therefore \sin P=\dfrac{12}{13}$
$\cos P=\dfrac{PQ}{PR}$
$\therefore \cos P=\dfrac{5}{13}$
$\tan P=\dfrac{QR}{PQ}$
$\therefore \tan P=\dfrac{12}{5}$
10. State whether the following are true or false. Justify your answer.
i) The value of $\tan A$ is always less than $1$.
Ans: The given statement is false. The value of $\tan A$ depends on the length of sides of a right triangle and sides of a triangle may have any measure.
ii) For some value of angle $A$, $\sec A=\dfrac{12}{5}$.
Ans: We know that in the right triangle $\sec A=\dfrac{\text{hypotenuse}}{\text{adjacent side of }\angle \text{A}}$ .
We know that in the right triangle the hypotenuse is the largest side.
Therefore, the value of $\sec A$ must be greater than $1$.
In the given statement $\sec A=\dfrac{12}{5}$, which is greater than $1$.
Therefore, the given statement is true.
iii) $\cos A$ is the abbreviation used for the cosecant of angle $A$.
Ans: The given statement is false because $\cos A$ is the abbreviation used for the cosine of angle $A$. Abbreviation used for the cosecant of angle $A$ is $\operatorname{cosec}A$.
iv) $\cot A$ is the product of $\cot $ and $A$.
Ans: $\cot A$ is the abbreviation used for the cotangent of angle $A$. Hence the given statement is false.
v) For some angle $\theta $, $\sin \theta =\dfrac{4}{3}$.
Ans: We know that in the right triangle $\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}}$ .
We know that in the right triangle the hypotenuse is the largest side.
Therefore, the value of $\sin \theta $ must be less than $1$.
In the given statement $\sin \theta =\dfrac{4}{3}$, which is greater than $1$.
Therefore, the given statement is false.
Conclusion
Class 10 Exercise 8.1 of Maths Chapter 8 -Introduction to Trigonometry, is crucial for a solid foundation in math. This exercise introduces the students to the fundamentals of trigonometry. Chapter 8 Maths Class 10 Ex 8.1 NCERT solutions deals with the types of problems like determining the trigonometric ratios given the sides of the triangle and finding the other trigonometric ratios given one of them by constructing a triangle of the respective ratio.
Class 10 Maths Chapter 8: Exercises Breakdown
Exercise | Number of Questions |
4 Questions & Solutions | |
4 Questions & Solutions |
CBSE Class 10 Maths Chapter 8 Other Study Materials
S.No. | Important Links for Chapter 8 Introduction to Trigonometry |
1 | |
2 | |
3 | |
4 | Class 10 Introduction To Trigonometry NCERT Exemplar Solution |
Chapter-Specific NCERT Solutions for Class 10 Maths
Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S.No. | NCERT Solutions Class 10 Chapter-wise Maths PDF |
1 | |
2 | |
3 | Chapter 3 - Pair Of Linear Equations In Two Variables Solutions |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 |
Study Resources for Class 10 Maths
For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.
S.No. | NCERT Study Resources for Class 10 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 |
FAQs on NCERT Solutions For Class 10 Maths Chapter 8 Introduction To Trigonometry
1. Is sin A the same as the product of 'sin' and 'A'?
No, sin A is a single term that represents the sine of angle A and is not a product. The notation 'sin' is meaningless without an angle. This common myth arises from treating 'sin' like a variable. Think of it like a function: sin(A), not sin × A.
2. Do the Class 10 Introduction to Trigonometry Exercise 8.1 solutions only provide the final answers?
No, the solutions provide complete, step-by-step explanations for every problem. A common misconception is that they are just an answer key. Each solution is designed to show the exact method, formulas used, and reasoning needed to arrive at the correct answer, helping you understand the process.
3. Does sin(A + B) equal sin A + sin B?
No, the sine function is not distributive over addition. This is a frequent mistake. For example, if A=30° and B=60°, sin(30°+60°) = sin(90°) = 1. However, sin(30°) + sin(60°) = 0.5 + (√3)/2, which is not equal to 1.
4. Can the value of sin θ be greater than 1?
No, for any acute angle θ, the value of sin θ is always less than or equal to 1. Since sin θ = Perpendicular/Hypotenuse, and the hypotenuse is always the longest side in a right-angled triangle, the ratio can never exceed 1.
5. Are solutions only available for Exercise 8.1?
No, solutions are available for the entire chapter. While you are looking at the Class 10 Maths Chapter 8 Exercise 8.1 solutions, you can also easily find detailed answers for Trigonometry Class 10 Exercise 8.2, 8.3, and 8.4 to support your learning through all topics.
6. What is actually included in the NCERT solutions for class 10 Maths chapter 8 exercise 8.1?
NCERT Solutions for Class 10 Maths Exercise 8.1 include detailed, step-by-step workings for every single question in the exercise, not just the final answers. Many students think these are just answer keys, but they are complete pedagogical tools. Each solution breaks down the problem logically.
7. In trigonometry, does 'perpendicular' always mean the vertical side of the triangle?
No, the 'perpendicular' side is correctly defined as the side opposite to the angle of consideration (θ). The misconception that it's always the vertical side comes from standard diagrams where the angle is often placed at the bottom-left vertex.
8. As an angle increases from 0° to 90°, does its cosine value also increase?
No, the value of cos θ actually decreases as the angle θ increases from 0° to 90°. The common myth is that all trigonometric ratios increase with the angle, which is only true for sin θ and tan θ in this range. The relationship is inverse for cosine.
9. Are the Ex 8.1 Class 10 PDF solutions truly helpful for exam preparation?
Yes, the Free PDF solutions are a highly effective tool for exam preparation because they allow for self-assessment and clarification. Students often think using solutions is a shortcut, but their real value lies in understanding the correct problem-solving methodology after you have attempted the questions yourself.
10. Is a statement like 'sec A = 12/5' possible for an angle A?
Yes, the value sec A = 12/5 is entirely possible for some angle A. The misconception arises when students incorrectly apply the rule for sin A and cos A (which must be ≤ 1) to all trigonometric ratios.

















