Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 10 Maths Chapter 10 Circles

ffImage
banner

NCERT Maths Chapter 10 Circles Class 10 Solutions - Free PDF Download

NCERT Solutions for Class 10 Maths Chapter 10: Circles delves into the properties and theorems related to circles, an essential component of geometry. The solutions provided here offer detailed explanations and step-by-step guidance to help you understand the concepts and solve problems effectively. Whether you are doing your homework or preparing for exams, these solutions are designed to align with the CBSE marking scheme and guidelines, ensuring you grasp the material thoroughly and perform well in your assessments.

toc-symbolTable of Content
toggle-arrow


Glance of NCERT Solutions for Class 10 Chapter 10 Maths Circles | Vedantu

  • In this article, learn about various aspects of circles including definitions related to tangents, secants, points of contact, etc.

  • Also delve into constructions related to circles, such as constructing tangents from a point outside the circle.

  • The solutions showcase how circle properties are used in real-world scenarios, like solving problems involving inscribed or circumscribed circles.

  • Also provides practice with problem-solving techniques.

  • This article contains chapter notes and important questions for Chapter 10 - Circles, which you can download as PDFs.

  • There are two exercises (18 fully solved question) in Class 10th Maths Chapter 10 Circles.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 10 Maths Chapter 10 Circles
Previous
Next
Vedantu 9&10
Subscribe
iconShare
Circles [ Full Chapter ] in One Shot | CBSE Class 10 Maths Chapter 10 | Umang 2021 | Term 2 Vedantu
17.8K likes
397.3K Views
3 years ago
Vedantu 9&10
Subscribe
iconShare
Circles L-2 (Number Of Tangents From A Point Outside the Circle) CBSE Class10 Maths | Term2 Vedantu
3.6K likes
74.2K Views
3 years ago
More Free Study Material for Circles
icons
Revision notes
877.5k views 13k downloads
icons
Important questions
787.2k views 12k downloads
icons
Ncert books
803.7k views 13k downloads

Exercises Covered in Class 10 Maths Chapter 10 Circles NCERT Solutions

The NCERT Solutions for Class 10 Maths Chapter 10 Circles comprise two exercises, Ex-10.1 and Ex-10.2. Solving the sums given in these two exercises is going to provide students with a deeper understanding of the concepts of circles, various theorems, corollaries, and applications of the formulas of Circles.


Exercise 10.1: The first exercise of Class 10 Maths Chapter 10 Circles is a short one, consisting of only 4 sums. These sums will help students to assess their understanding of the properties of circles, including the concepts of tangents, secants, radii, diameters, chords, etc. There are fill-in-the-blank and short answer-type questions covered in Ex-10.1. Students will have to apply the Pythagoras theorem in solving one of the sums of this exercise, while the last sum is based on the construction of circles.


Exercise 10.2: The first exercise consists of a total of 13 sums. Students will be able to get a good understanding of various concepts of angles, triangles, quadrilaterals, circles inscribed in quadrilaterals, circles circumscribing polygons, Pythagoras theorem, etc., when they solve the sums given in this exercise. Students will need to calculate the lengths and angles subtended by chords, tangents, etc., for some of the sums. The remaining sums of this exercise are mostly based on the deduction of equations using the application of various formulas and theorems of circles. The solutions to the sums given in NCERT Class 10 Maths Exercise 10.2 are very important from the exam point of view.


Access NCERT Solutions for Class 10 Maths Chapter 10 – Circles

Exercise 10.1

1. How many tangents can a circle have?

Ans:

We know that a circle has an infinite number of points on its perimeter. Hence, there will be an infinite number of tangents on a circle.

2. Fill in the blanks: 

(i). A tangent to a circle intersects it in _________ point(s).

Ans:

A tangent to a circle intersects it in exactly one point(s).

(ii). A line intersecting a circle in two points is called a _______.

Ans:

A line intersecting a circle in two points is called a secant.

(iii). A circle can have _______ parallel tangents at the most.

Ans:

A circle can have two parallel tangents at the most.

(iv). The common point of a tangent to a circle and the circle is called ______.

Ans:

The common point of a tangent to a circle and the circle is called point of contact.

3. A tangent \[PQ\] at a point \[P\] of a circle of radius \[5\ \text{cm}\] meets a line through the centre \[O\] at a point \[Q\] so that \[OQ=12\ \text{cm}\]. 

Length of \[PQ\] is: (A) \[12\ \text{cm}\] (B) \[13\ \text{cm}\] (C) \[8.5\ \text{cm}\] (D) \[\sqrt{119}\].

Ans:

As, the tangent $PQ$ is base and radius is the height of $5\ \text{cm}$. Also, $OQ$ is the hypotenuse. Therefore, the length of $PQ$ will be –

$PQ=\sqrt{O{{Q}^{2}}-O{{P}^{2}}}$

\[\Rightarrow PQ=\sqrt{{{12}^{2}}-{{5}^{2}}}\]

\[\Rightarrow PQ=\sqrt{144-25}\]

\[\Rightarrow PQ=\sqrt{119}\]

Hence, option \[(D)\] is correct.

4. Draw a circle and two lines parallel to a given line such that one is tangent and the other, a secant to the circle.

Ans:


A circle and two lines parallel to a given line such that one is tangent and the other, a secant to the circle.


From the figure given above let us assume that a line \[l\] and a circle having centre \[O\], comprises a line \[PT\] which is parallel to the line \[l\] and is a tangent to the circle. Similarly, \[AB\] is a secant parallel to the line \[l\].

Exercise 10.2

1. From a point \[Q\], the length of the tangent to a circle is \[24\ \text{cm}\] and the distance of \[Q\] from the centre is \[25\ \text{cm}\]. The radius of the circle is 

(A) \[7\ \text{cm}\] (B) \[12\ \text{cm}\] (C) \[15\ \text{cm}\] (D) \[24.5\ \text{cm}\].

Ans:


Exercise 10.2. 1


From the figure given above, let us assume that \[O\] is the centre of the circle and given we have $PQ$ as the tangent to the circle of length $24\ \text{cm}$, and $OQ$ is of length $25\ \text{cm}$.

Now, by using the Pythagoras theorem we have –

$OP=\sqrt{O{{Q}^{2}}-P{{Q}^{2}}}$

$\Rightarrow OP=\sqrt{{{25}^{2}}-{{24}^{2}}}$

$\Rightarrow OP=\sqrt{625-576}$

$\Rightarrow OP=\sqrt{49}$

$\Rightarrow OP=7\ \text{cm}$.

Hence, option \[(A)\] is correct.

2. In the given figure, if \[TP\] and \[TQ\] are the two tangents to a circle with centre \[O\] so that \[\angle POQ=110{}^\circ \], then \[\angle PTQ\] is equal to 

(A) \[60{}^\circ \] (B) \[70{}^\circ \] (C) \[80{}^\circ \] (D) \[90{}^\circ \].


Two tangents perpendicular to the radius of the circle


Ans:

As, from the given figure, we can observe that there are two tangents perpendicular to the radius of the circle as $TP$ and $TQ$. Since, they are perpendicular to the radius hence, we have $\angle OPT=90{}^\circ $ and 

$\angle OQT=90{}^\circ $.

Therefore, $\angle PTQ=360{}^\circ -\angle OPT-\angle OTQ-\angle POQ$

$\Rightarrow \angle PTQ=360{}^\circ -90{}^\circ -90{}^\circ -110{}^\circ $

$\Rightarrow \angle PTQ=360{}^\circ -290{}^\circ $

$\Rightarrow \angle PTQ=70{}^\circ $

Hence, option \[(B)\] is correct.

3. If tangents \[PA\] and \[PB\] from a point \[P\] to a circle with centre \[O\] are inclined to each other an angle of \[80{}^\circ \], then \[\angle POA\] is equal to 

(A) \[50{}^\circ \] (B) \[60{}^\circ \] (C) \[70{}^\circ \] (D) \[80{}^\circ \].

Ans:

As, we have two tangents $PA$ and $PB$ which will be perpendicular to the radius of the circle. Hence, we have $\angle PAO=90{}^\circ $ and 

$\angle PBO=90{}^\circ $. Since this is a quadrilateral, we will have the sum of all interior angles equal to $360{}^\circ $.

Therefore,

$\angle PAO+\angle PBO+\angle APB+\angle AOB=360{}^\circ $

$\Rightarrow 90{}^\circ +90{}^\circ +80{}^\circ +\angle AOB=360{}^\circ $

$\Rightarrow \angle AOB=360{}^\circ -260{}^\circ $

$\Rightarrow \angle AOB=100{}^\circ $.

Now, we know that $\angle POA$ is half of the $\angle AOB$.

Therefore,

$\angle POA=\frac{\angle AOB}{2}$

$\Rightarrow \angle POA=\frac{100{}^\circ }{2}$

$\Rightarrow \angle POA=50{}^\circ $.

Hence, option \[(A)\] is correct.

4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Ans:


Tangents drawn at the ends of a diameter of a circle are parallel


As, from the figure given above, let us assume that \[O\] is the centre of the circle and \[AB\], \[CD\] are the two tangents at the ends of the diameter of the circle.

Now, we know that tangents are perpendicular to the radius of the circle.

Hence, \[\angle CQO=90{}^\circ \]

\[\angle DQO=90{}^\circ \]

\[\angle APO=90{}^\circ \]

\[\angle BPO=90{}^\circ \].

Therefore, we can say that \[\angle CPQ=\angle BQP\] because they are alternate angles. Similarly, \[\angle AQP=\angle QPD\].

Hence, if the interior alternate angles are equal then the lines \[AB\], \[CD\] should be parallel lines.

Hence, proved.

5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Ans:


Perpendicular at the point of contact to the tangent to a circle passes through the centre


Let us assume that the line perpendicular at the point of contact to the tangent of a circle does not pass through the centre \[O\] but passes through a point \[Q\] as shown in the figure above.

Hence, we have the line \[PQ\bot AB\].

$\Rightarrow \angle QPB=90{}^\circ $

Also, we have $\angle OPB=90{}^\circ $.

After comparing both the equations we get –

$\Rightarrow \angle QPB=\angle OPB$

But, from the figure drawn above we can observe that this is not the case as $\angle QPB<\angle OPB$.

Therefore, we can conclude that $\angle QPB\ne \angle OPB$. They can only be equal when these two-line segments $QP$ and $OP$ will be equal. This implies that the line perpendicular at the point of contact to the tangent of a circle passes through the centre \[O\]. Hence, proved.

6. The length of a tangent from a point \[A\] at distance \[5\ \text{cm}\] from the centre of the circle is \[4\ \text{cm}\]. Find the radius of the circle.

Ans:


The length of a tangent from a point \[A\] at distance \[5\ \text{cm}\] from the centre of the circle is \[4\ \text{cm}\].


From the figure given above, let us assume that \[O\] is the centre of the circle and given we have $AB$ as the tangent to the circle of length $4\ \text{cm}$, and $OA$ is of length $5\ \text{cm}$.

Now, by using the Pythagoras theorem we have –

$OB=\sqrt{O{{A}^{2}}-A{{B}^{2}}}$

$\Rightarrow OB=\sqrt{{{5}^{2}}-{{4}^{2}}}$

$\Rightarrow OB=\sqrt{25-16}$

$\Rightarrow OB=\sqrt{9}$

$\Rightarrow OB=3\ \text{cm}$.

Therefore, the radius of the circle will be $3\ \text{cm}$.

7. Two concentric circles are of radii \[5\ \text{cm}\] and \[3\ \text{cm}\]. Find the length of the chord of the larger circle which touches the smaller circle.

Ans:


Two concentric circles are of radii \[5\ \text{cm}\] and \[3\ \text{cm}\]


From the figure given above, we can observe that the line segment $PQ$ is the chord of the larger circle and a tangent to the smaller circle.

Therefore, \[OA\bot PQ\].

Now, we can observe that the \[\Delta OAP\] forms a right-angled triangle.

Hence, by applying Pythagoras theorem –

\[AP=\sqrt{O{{P}^{2}}-O{{A}^{2}}}\]

\[\Rightarrow AP=\sqrt{{{5}^{2}}-{{3}^{2}}}\]

\[\Rightarrow AP=\sqrt{25-9}\]

\[\Rightarrow AP=\sqrt{16}\]

\[\Rightarrow AP=4\ \text{cm}\].

Now, since the radius is perpendicular to the tangent therefore, we have \[AP=AQ\].

Hence, \[PQ=2AP\].

\[\Rightarrow PQ=2\times 4\]

\[\Rightarrow PQ=8\ \text{cm}\].

So, the length of the chord will be of \[8\ \text{cm}\].

8. A quadrilateral \[ABCD\] is drawn to circumscribe a circle. Prove that \[AB+CD=AD+BC\].


circumscribe a circle


Ans:

From the figure given we can observe that the sides of the quadrilateral acts as tangents to the circle. As, the tangents drawn from any external point will have the same length. Therefore, we have –

\[DR=DS\], 

\[CR=CQ\], 

\[BP=BQ\], and 

\[AP=AS\].

Now, we will add all the relations.

Hence, \[DR+CR+BP+AP=DS+CQ+BQ+AS\]

\[\Rightarrow \left( DR+CR \right)+\left( BP+AP \right)=\left( DS+AS \right)+\left( CQ+BQ \right)\]

\[\Rightarrow DC+AB=AD+BC\]

Hence, proved.

9. In the given figure, \[XY\] and \[X'Y'\] are two parallel tangents to a circle with centre \[O\] and another tangent \[AB\] with point of contact \[C\] intersecting \[XY\] at \[A\] and \[X'Y'\] at \[B\]. Prove that \[\angle AOB=90{}^\circ \].


\[XY\] and \[X'Y'\] are two parallel tangents to a circle with centre \[O\] and another tangent \[AB\] with point of contact \[C\] intersecting \[XY\] at \[A\] and \[X'Y'\] at \[B\]


Ans:

From the figure given we can observe that \[AB\], \[XY\] and \[X'Y'\] are tangents to the circle and will be perpendicular to its radius.

Now, let us consider two triangles \[\Delta OPA\] and \[\Delta OCA\], such that –

\[OP=OC\],

\[AP=AC\].

Hence, we have \[\Delta OPA\cong \Delta OCA\] by the SSS congruence rule.

\[\Rightarrow \angle POA=\angle COA\].

In the similar manner \[\Delta OQB\cong \Delta OCB\].

\[\Rightarrow \angle QOB=\angle COB\].

Now, we know that \[PQ\] is the diameter of the circle.

\[\Rightarrow \angle POA+\angle COA+\angle COB+\angle QOB=180{}^\circ \]

\[\Rightarrow 2\angle COA+2\angle COB=180{}^\circ \]

\[\Rightarrow \angle COA+\angle COB=90{}^\circ \]

\[\Rightarrow \angle AOB=90{}^\circ \].

Hence, proved.

10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Ans:


angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.


Let us assume a circle with centre at \[O\], which have two tangents \[PA\] and \[PB\] which are perpendicular to the radius of the circle as shown in the figure above.

Now, let us consider two triangles \[\Delta OAP\] and \[\Delta OBP\], such that –

\[PA=PB\], and 

\[OA=OB\].

Hence, we have \[\Delta OAP\cong \Delta OBP\] by the SSS congruence criteria.

Therefore, \[\angle OPA=\angle OPB\] and

\[\angle AOP=\angle BOP\].

This implies that \[\angle APB=2\angle OPA\] and

\[\angle AOB=2\angle AOP\].

Hence, in the right-angled triangle \[\Delta OAP\], we have –

\[\angle AOP+\angle OPA=90{}^\circ \]

\[2\angle AOP+2\angle OPA=180{}^\circ \]

\[\Rightarrow \angle AOB=180{}^\circ -\angle APB\]

\[\Rightarrow \angle AOP+\angle OPA=180{}^\circ \].

Hence, proved.

11. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans:


a parallelogram whose sides are tangent to the circle


From the figure given above, we can observe that \[ABCD\] is a parallelogram whose sides are tangent to the circle. This implies that \[DR=DS\], 

\[CR=CQ\], 

\[BP=BQ\], and 

\[AP=AS\].

Now, we will add all the relations.

Hence, \[DR+CR+BP+AP=DS+CQ+BQ+AS\]

\[\Rightarrow\left( DR+CR \right)+\left( BP+AP \right)=\left( DS+AS \right)+\left( CQ+BQ \right)\]

\[\Rightarrow DC+AB=AD+BC\]

As, the sides of a parallelogram are always parallel and equal in length.

Therefore, \[AB=DC\] and

\[AD=BC\].

\[\Rightarrow 2AB=2BC\]

\[\Rightarrow AB=BC\]

Hence, all the sides of parallelogram are equal.

Therefore, we can conclude that it is a rhombus. Hence, proved.

12. A triangle \[ABC\] is drawn to circumscribe a circle of radius \[4\ \text{cm}\] such that the Segments \[BD\] and \[DC\] into which \[BC\] is divided by the point of contact \[D\] are of lengths \[8\ \text{cm}\] and \[6\ \text{cm}\] respectively. Find the sides \[AB\] and \[AC\].

Ans:


A triangle \[ABC\] is drawn to circumscribe a circle of radius \[4\ \text{cm}\] such that the Segments \[BD\] and \[DC\] into which \[BC\] is divided by the point of contact \[D\] are of lengths \[8\ \text{cm}\] and \[6\ \text{cm}\] respectively


From the figure given above, we can observe that the sides of a triangle \[ABC\] are the tangents to the circle and are perpendicular to the radius of the circle.

Hence, in \[\Delta ABC\]

\[CF=CD=6\ \text{cm}\]

Similarly, \[BE=BD=8\ \text{cm}\] and

\[AE=AF=x\ \text{cm}\].

In \[\Delta ABE\],

\[AB=AE+BE\]

\[\Rightarrow AB=x+8\]

Similarly, \[BC=8+6=14\] and

\[CA=6+x\].

Therefore, we have \[2s=AB+BC+CA\]

\[\Rightarrow 2s=x+8+14+6+x\]

\[\Rightarrow 2s=2x+28\]

\[\Rightarrow s=x+14\].

Now, we know that the area of a triangle can be calculated by using the formula \[Area=\sqrt{s(s-a)(s-b)(s-c)}\].

Therefore,

\[Area\ \text{of}\ \Delta \text{ABC}=\sqrt{(14+x)(14+x-6-x)(14+x-8-x)}\]

\[\Rightarrow \sqrt{x(14+x)(8)(6)}\]

\[\Rightarrow 4\sqrt{3(14x+{{x}^{2}})}\].

Hence, \[Area\ \text{of}\ \Delta \text{OBC = }\frac{1}{2}\times OD\times BC\]

\[Area\ \text{of}\ \Delta \text{OBC =}28\]

\[\Rightarrow Area\ \text{of}\ \Delta \text{OCA = }\frac{1}{2}\times OF\times AC\]

\[Area\ \text{of}\ \Delta \text{OCA = 12+2x}\]

\[\Rightarrow Area\ \text{of}\ \Delta \text{OAB = }\frac{1}{2}\times OE\times AB\]

\[Area\ \text{of}\ \Delta \text{OAB = 16+2x}\]

Therefore, the total area of the triangle \[ABC\] will be –

\[=Area\ \Delta \text{OBC}+Area\ \Delta \text{OCA+}Area\ \Delta \text{OAB}\]

\[\Rightarrow 4\sqrt{3(14x+{{x}^{2}})}=28+12+2x+16x+2x\]

\[\Rightarrow \sqrt{3(14x+{{x}^{2}})}=14+x\]

\[\Rightarrow 3(14x+{{x}^{2}})={{(14+x)}^{2}}\]

Hence, after further solving we have –

\[(x+14)(x-7)=0\]

\[\Rightarrow x=-14\] or

\[\Rightarrow x=7\]

As, the side cannot be negative in nature, therefore, \[x=7\ \text{cm}\].

Hence, \[AB=7+8\]

\[\Rightarrow AB=15\ \text{cm}\] and

\[CA=6+7\]

\[\Rightarrow CA=13\ \text{cm}\].

13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend Supplementary angles at the centre of the circle.

Ans:


the sides of the quadrilateral acts as tangents to the circle


From the figure given we can observe that the sides of the quadrilateral acts as tangents to the circle. Therefore, we have –

\[\angle AOB+\angle COD=180{}^\circ \] and

\[\angle BOC+\angle DOA=180{}^\circ \]

Now, let us consider two triangles \[\Delta OAP\] and \[\Delta OAS\],

Hence, we have \[AP=AS\], and

\[OP=OS\]

\[\Rightarrow \Delta OAP\cong \Delta OAS\] by the SSS congruence criteria.

Thus, \[\angle POA=\angle AOS\]

\[\angle 1=\angle 8\]

Also,

\[\angle 2=\angle 3\],

\[\angle 4=\angle 5\],

\[\angle 6=\angle 7\]

Therefore, \[\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360{}^\circ \]

\[\Rightarrow \left( \angle 1+\angle 8 \right)+\left( \angle 2+\angle 3 \right)+\left( \angle 4+\angle 5 \right)+\left( \angle 6+\angle 7 \right)=360{}^\circ \]

\[\Rightarrow 2\angle 1+2\angle 2+2\angle 5+2\angle 6=360{}^\circ \]

\[\Rightarrow \left( \angle 1+\angle 2 \right)+\left( \angle 5+\angle 6 \right)=180{}^\circ \]

\[\Rightarrow \angle AOB+\angle COD=180{}^\circ \]

In the similar manner we can prove that \[\angle BOC+\angle DOA=180{}^\circ \].

Therefore, we have proved that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.


NCERT Solutions for Class 10 Maths Chapter 10 Exercises

Exercises

Number of Questions

Exercise 10.1

4 Questions & Solutions (2 Short Answers, 2 Long Answers)

Exercise 10.2

13 Questions & Solutions (2 Short Answers, 14 Long Answers)



Conclusion

The NCERT Solutions for Class 10 Maths Chapter 10 - Circles, provided by Vedantu, are designed to help students understand the properties and theorems related to circles. It's important to focus on key concepts like tangent properties, the number of tangents from a point to a circle, and the theorems involving angles and radii. These concepts are crucial for solving problems accurately. From previous year question papers, around 2 to 3 questions are typically asked from this chapter. Understanding and practicing these solutions will help students score well in their exams.


Other Study Material for CBSE Class 10 Maths Chapter 10



NCERT Solutions for Class 10 Maths - Other Chapters

Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Study Resources for Class 10 Maths

For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.

WhatsApp Banner
Best Seller - Grade 10
View More>
Previous
Next

FAQs on NCERT Solutions for Class 10 Maths Chapter 10 Circles

1. What are NCERT Solutions for Class 10 Maths Chapter 10 Circles?

NCERT Solutions for Class 10 Maths Chapter 10 Circles are step-by-step explanations and answers to all textbook questions in this chapter, helping students understand circle theorems, tangents, and related problems as per CBSE 2025–26 guidelines.

2. How should students approach solving Class 10 Circles problems using NCERT Solutions?

Students should:

  • Carefully read and understand each theorem or formula related to circles.
  • Draw diagrams to visualize the geometry problem.
  • Follow the structured, stepwise method shown in NCERT solutions.
  • Use correct terminology like tangent, secant, and radius as per CBSE patterns.

3. What are the key concepts covered in NCERT Solutions for Circles Class 10?

The key concepts include:

  • Tangent and secant definitions
  • Properties and theorems of tangents
  • Number of tangents from an external point
  • Proving geometric properties using theorems about circles
  • Applications of tangents and chords

4. Why is it important to follow CBSE marking schemes when using NCERT Solutions for Class 10 Maths Chapter 10?

Adhering to CBSE marking schemes ensures students write answers in the expected format, include all necessary steps, and secure step marks in the exams for each part of the solution, which is crucial for scoring full marks.

5. How many exercises are there in Class 10 Maths Chapter 10 Circles, and what do they focus on?

Chapter 10 contains two exercises (Ex 10.1 and Ex 10.2) that focus on properties of tangents, circle theorems, construction, and application of tangent theorems to geometric problems.

6. Can a circle have more than two parallel tangents? Why/why not? (FUQ)

No, a circle can have only two parallel tangents at most, because parallel tangents must touch on opposite sides, and only two unique tangents can fulfill this condition according to the geometry of circles.

7. What common mistakes should be avoided when applying theorems from NCERT Solutions for Circles?

Students often make these errors:

  • Forgetting that a tangent is always perpendicular to the radius at the point of contact
  • Mixing up secant and tangent definitions
  • Not writing all stepwise reasoning or skipping construction steps
  • Incorrect or missing diagrams

8. How do NCERT Solutions for Class 10 Circles develop problem-solving abilities for board exams? (FUQ)

They teach students to:

  • Break down complex geometry questions into logical steps
  • Apply relevant theorems methodically
  • Visualize with labelled diagrams
  • Write clear justifications for each step, mirroring CBSE requirements

9. What types of questions are typically asked from Class 10 Maths Chapter 10 Circles in board exams?

Board exams often feature:

  • Proofs of properties and theorems involving tangents
  • Constructions and diagram-based questions
  • Numerical application of tangent theorems using Pythagoras
  • Short-answer conceptual questions on definitions

10. What is the most important theorem in Class 10 Circles and how is it used? (FUQ)

The tangent–radius theorem (The tangent to a circle is perpendicular to the radius at the point of contact) is foundational. It's used to prove relationships in problems, deduce lengths via the Pythagoras theorem, and establish the properties of tangents from external points.

11. How do you prove that two tangents drawn from an external point to a circle are equal in length using NCERT Solutions? (FUQ)

By connecting the external point to the points of contact, both tangents are shown to form two congruent triangles with the circle's center. Using the tangent–radius theorem and congruence criteria, it's proved that the lengths are equal—a standard stepwise proof in NCERT Solutions.

12. What is a secant, and how does it differ from a tangent in Class 10 Circles?

A secant is a line that intersects a circle at exactly two points, whereas a tangent touches the circle at only one point. This distinction is critical in solving and classifying circle problems.

13. Why are diagrams essential in solving NCERT Solutions questions for Circles Class 10? (FUQ)

Diagrams help:

  • Visualize relationships among points, tangents, and radii
  • Identify where theorems apply
  • Communicate steps to the examiner, often earning diagram marks per the CBSE marking scheme

14. What is the application of the Pythagoras theorem in Class 10 Circles problems?

The Pythagoras theorem is applied in right triangles formed by the center, the point of tangency, and an external point/tangent, allowing calculation of lengths of tangents, radii, or distances between known points as required by NCERT Solutions.

15. How do NCERT Solutions for Circles help in preparation for higher-level concepts in mathematics? (FUQ)

They lay the foundation for understanding advanced geometry, proofs, and logical reasoning needed for competitive exams (JEE, Olympiads), and deepen conceptual clarity for topics like loci, coordinate geometry, and conic sections studied in higher classes.