Class 10 Maths Chapter 4 Questions and Answers with Step-by-Step Solutions
NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equation, covers a crucial aspect of algebra that every student must grasp. This chapter introduces quadratic equations, detailing methods to solve them, including factoring, using the quadratic formula, and completing the square. Understanding these concepts is key, as they are foundational for higher mathematics and problem solving in science and engineering. Focus on mastering the techniques for finding the roots of quadratic equations and recognizing their practical applications. Clear explanations and step-by-step solutions in Vedantu’s materials help understand complex concepts, making them accessible and understandable.


Glance of NCERT Solutions of Maths Chapter 4 Quadratic Equations for Class 10 | Vedantu
Chapter 4 of Class 10 Maths deals with quadratic equations, which are equations of the form ax^2 + bx + c = 0, where a ≠ 0.
Learn about standard forms, where a, b, and c are real numbers.
The chapter focuses on finding the roots/solutions of these equations, which are the values of x that satisfy the equation.
There are different methods for solving quadratics, such as Factorization and by using Quadratic Formula
A key concept is the discriminant (b² - 4ac). It helps determine the nature of the roots:
Distinct Real Roots (D > 0): When the discriminant is positive, there are two distinct real solutions for x.
Equal Real Roots (D = 0): A positive discriminant of zero indicates two equal real roots.
No Real Roots (D < 0): A negative discriminant means there are no real number solutions, but there might be complex solutions.
The chapter also covers forming quadratic equations from word problems and applications of quadratic equations in real-life scenarios.
This article contains chapter notes important questions and Exercises link for Chapter 4 - Quadratic Equations, which you can download as PDFs.
There are four exercises and one miscellaneous exercise (24 fully solved questions) in class 10th maths chapter 4 Quadratic Equations.
Access Exercise Wise NCERT Solutions for Chapter 4 Maths Class 10
S. No | Current Syllabus Exercises of Class 10 Maths Chapter 4 |
1 | NCERT Solutions of Class 10 Maths Quadratic Equations Exercise 4.1 |
2 | NCERT Solutions of Class 10 Maths Quadratic Equations Exercise 4.2 |
3 | NCERT Solutions of Class 10 Maths Quadratic Equations Exercise 4.3 |
NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations 2025-26
Class 10 Maths Chapter 4 Questions and Answers with Step-by-Step Solutions
Exercise 4.1:
This exercise covers the introduction to quadratic equations and the standard form of a quadratic equation. It also includes methods for solving quadratic equations by factorisation. In this exercise, students will learn how to identify a quadratic equation, how to convert a quadratic equation into standard form, and how to factorise quadratic equations using different methods. The exercise includes a set of questions that range from easy to difficult, allowing students to gradually build their understanding of the concepts.
Exercise 4.2:
This exercise covers more advanced methods for solving quadratic equations, such as completing the square and using the quadratic formula. It includes the derivation of the quadratic formula and shows how to apply it to solve quadratic equations. In this exercise, students will learn how to complete the square of a quadratic equation to convert it into standard form, and how to use the quadratic formula to solve quadratic equations. The exercise includes questions that require students to use both methods to solve quadratic equations.
Exercise 4.3:
This exercise covers real-life applications of quadratic equations and includes word problems that require students to apply their knowledge of quadratic equations to solve practical problems. The exercise includes problems related to the trajectory of a projectile, finding the distance between two ships, and the dimensions of a garden. Students will learn how to formulate and solve quadratic equations to solve real-life problems. The exercise includes a set of word problems that gradually increase in difficulty, allowing students to develop their problem-solving skills.
Access NCERT Solutions for Class - 10 Maths Chapter 4 – Quadratic Equations
Exercise 4.1
1. Check whether the following are quadratic equations:
i. ${{\left( \text{x+1} \right)}^{\text{2}}}\text{=2}\left( \text{x-3} \right)$
Ans: ${{\left( \text{x+1} \right)}^{\text{2}}}\text{=2}\left( \text{x-3} \right)$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+2x+1=2x-6}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+7=0}$
Since, it is in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is a quadratic equation.
ii. ${{\text{x}}^{\text{2}}}\text{-2x=}\left( \text{-2} \right)\left( \text{3-x} \right)$
Ans: ${{\text{x}}^{\text{2}}}\text{-2x=}\left( \text{-2} \right)\left( \text{3-x} \right)$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-2x=-6+2x}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-4x+6=0}$
Since, it is in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is a quadratic equation.
iii. $\left( \text{x-2} \right)\left( \text{x+1} \right)\text{=}\left( \text{x-1} \right)\left( \text{x+3} \right)$
Ans: $\left( \text{x-2} \right)\left( \text{x+1} \right)\text{=}\left( \text{x-1} \right)\left( \text{x+3} \right)$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-x-2=}{{\text{x}}^{\text{2}}}\text{+2x-3}$
$\Rightarrow \text{3x-1=0}$
Since, it is not in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is not a quadratic equation.
iv. $\left( \text{x-3} \right)\left( \text{2x+1} \right)\text{=x}\left( \text{x+5} \right)$
Ans: $\left( \text{x-3} \right)\left( \text{2x+1} \right)\text{=x}\left( \text{x+5} \right)$
$\Rightarrow \text{2}{{\text{x}}^{\text{2}}}\text{-5x-3=}{{\text{x}}^{\text{2}}}\text{+5x}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-10x-3=0}$
Since, it is in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is a quadratic equation.
v. $\left( \text{2x-1} \right)\left( \text{x-3} \right)\text{=}\left( \text{x+5} \right)\left( \text{x-1} \right)$
Ans: $\left( \text{2x-1} \right)\left( \text{x-3} \right)\text{=}\left( \text{x+5} \right)\left( \text{x-1} \right)$
$\Rightarrow \text{2}{{\text{x}}^{\text{2}}}\text{-7x+3=}{{\text{x}}^{\text{2}}}\text{+4x-5}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-11x+8=0}$
Since, it is in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is a quadratic equation.
vi. ${{\text{x}}^{\text{2}}}\text{+3x+1=}{{\left( \text{x-2} \right)}^{\text{2}}}$
Ans: ${{\text{x}}^{\text{2}}}\text{+3x+1=}{{\left( \text{x-2} \right)}^{\text{2}}}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+3x+1=}{{\text{x}}^{\text{2}}}\text{+4-4x}$
$\Rightarrow \text{7x-3=0}$
Since, it is not in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is not a quadratic equation.
vii. ${{\left( \text{x+2} \right)}^{\text{3}}}\text{=2x}\left( {{\text{x}}^{\text{2}}}\text{-1} \right)$
Ans: ${{\left( \text{x+2} \right)}^{\text{3}}}\text{=2x}\left( {{\text{x}}^{\text{2}}}\text{-1} \right)$
$\Rightarrow {{\text{x}}^{\text{3}}}\text{+8+6}{{\text{x}}^{\text{2}}}\text{+12x=2}{{\text{x}}^{\text{3}}}\text{-2x}$
$\Rightarrow {{\text{x}}^{\text{3}}}\text{-14x-6}{{\text{x}}^{\text{2}}}\text{-8=0}$
Since, it is not in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is not a quadratic equation.
viii. ${{\text{x}}^{\text{3}}}\text{-4}{{\text{x}}^{\text{2}}}\text{-x+1=}{{\left( \text{x-2} \right)}^{\text{3}}}$
Ans: ${{\text{x}}^{\text{3}}}\text{-4}{{\text{x}}^{\text{2}}}\text{-x+1=}{{\left( \text{x-2} \right)}^{\text{3}}}$
$\Rightarrow {{\text{x}}^{\text{3}}}\text{-4}{{\text{x}}^{\text{2}}}\text{-x+1=}{{\text{x}}^{\text{3}}}\text{-8-6}{{\text{x}}^{\text{2}}}\text{+12x}$
$\Rightarrow \text{2}{{\text{x}}^{\text{2}}}\text{-13x+9=0}$
Since, it is in the form of $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Therefore, the given equation is a quadratic equation.
2. Represent the following situations in the form of quadratic equations.
i. The area of a rectangular plot is $\text{528 }{{\text{m}}^{\text{2}}}$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
Ans: Let the breath of the plot be $\text{x m}$.
Thus, length would be-
$\text{Length=}\left( \text{2x+1} \right)\text{m}$
Hence, Area of rectangle $=$$\text{Length }\!\!\times\!\!\text{ breadth}$
So, $\text{528=x}\left( \text{2x+1} \right)$
$\Rightarrow \text{2}{{\text{x}}^{\text{2}}}\text{+x-528=0}$
ii. The product of two consecutive positive integers is $\text{306}$. We need to find the integers.
Ans: Let the consecutive integers be $\text{x}$ and $\text{x+1}$.
Thus, according to question-
$\text{x}\left( \text{x+1} \right)\text{=306}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+x-306=0}$
iii. Rohan’s mother is $\text{26}$ years older than him. The product of their ages (in years) $\text{3}$ years from now will be $\text{360}$. We would like to find Rohan’s present age.
Ans: Let Rohan’s age be $\text{x}$.
Hence, his mother’s age is $\text{x+26}$ .
Now, after $\text{3 years}$.
Rohan’s age will be $\text{x+3}$.
His mother’s age will be $\text{x+29}$ .
So, according to question-
$\left( \text{x+3} \right)\left( \text{x+29} \right)\text{=360}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+3x+29x+87=360}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+32x-273=0}$
iv. A train travels a distance of $\text{480 km}$ at a uniform speed. If the speed had been $\text{8km/h}$ less, then it would have taken $\text{3}$ hours more to cover the same distance. We need to find the speed of the train.
Ans: Let the speed of train be $\text{x km/h}$.
Thus, time taken to travel $\text{482 km}$ is $\dfrac{\text{480}}{\text{x}}\text{hrs}$.
Now, let the speed of train $\text{=}\left( \text{x-8} \right)\text{km/h}$.
Therefore, time taken to travel $\text{480 km}$ is $\left( \dfrac{\text{480}}{\text{x}}+3 \right)\text{hrs}$.
Hence, $\text{speed }\!\!\times\!\!\text{ time=distance}$
i.e $\left( \text{x-8} \right)\left( \dfrac{\text{480}}{\text{x}}\text{+3} \right)\text{=480}$
$\Rightarrow \text{480+3x-}\dfrac{\text{3840}}{\text{x}}\text{-24=480}$
$\Rightarrow \text{3x-}\dfrac{\text{3840}}{\text{x}}\text{=24}$
$\Rightarrow \text{3}{{\text{x}}^{\text{2}}}\text{-24x-3840=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-8x-1280=0}$
Exercise 4.2
1. Find the roots of the following quadratic equations by factorisation:
i. ${{\text{x}}^{\text{2}}}\text{-3x-10=0}$
Ans: ${{\text{x}}^{\text{2}}}\text{-3x-10=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-5x+2x-10}$
$\Rightarrow \text{x}\left( \text{x-5} \right)\text{+2}\left( \text{x-5} \right)$
$\Rightarrow \left( \text{x-5} \right)\left( \text{x+2} \right)$
Therefore, roots of this equation are –
$\text{x-5=0}$ or $\text{x+2=0}$
i.e $\text{x=5}$ or $\text{x=-2}$
ii. $\text{2}{{\text{x}}^{\text{2}}}\text{+x-6=0}$
Ans: $\text{2}{{\text{x}}^{\text{2}}}\text{+x-6=0}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+4x-3x-6}$
$\Rightarrow 2\text{x}\left( \text{x+2} \right)-3\left( \text{x+2} \right)$
$\Rightarrow \left( \text{x+2} \right)\left( \text{2x-3} \right)$
Therefore, roots of this equation are –
$\text{x+2=0}$ or $\text{2x-3=0}$
i.e $\text{x=-2}$ or $\text{x=}\dfrac{3}{2}$
iii. $\sqrt{\text{2}}{{\text{x}}^{\text{2}}}\text{+7x+5}\sqrt{\text{2}}\text{=0}$
Ans: $\sqrt{\text{2}}{{\text{x}}^{\text{2}}}\text{+7x+5}\sqrt{\text{2}}\text{=0}$
$\Rightarrow \sqrt{\text{2}}{{\text{x}}^{\text{2}}}\text{+5x+2x+5}\sqrt{\text{2}}$
$\Rightarrow \text{x}\left( \sqrt{\text{2}}\text{x+5} \right)+\sqrt{\text{2}}\left( \sqrt{\text{2}}\text{x+5} \right)$
$\Rightarrow \left( \sqrt{\text{2}}\text{x+5} \right)\left( \text{x+}\sqrt{\text{2}} \right)$
Therefore, roots of this equation are –
$\sqrt{\text{2}}\text{x+5=0}$ or $\text{x+}\sqrt{\text{2}}\text{=0}$
i.e $\text{x=}\dfrac{-5}{\sqrt{\text{2}}}$ or $\text{x=-}\sqrt{\text{2}}$
iv. $\text{2}{{\text{x}}^{\text{2}}}\text{-x+}\dfrac{\text{1}}{\text{8}}\text{=0}$
Ans: $\text{2}{{\text{x}}^{\text{2}}}\text{-x+}\dfrac{\text{1}}{\text{8}}\text{=0}$
\[\Rightarrow \dfrac{\text{1}}{\text{8}}\left( 16{{\text{x}}^{\text{2}}}-8x+1 \right)\]
\[\Rightarrow \dfrac{\text{1}}{\text{8}}\left( 4x\left( 4x-1 \right)-1\left( 4x-1 \right) \right)\]
$\Rightarrow \dfrac{\text{1}}{\text{8}} {{\left( \text{4x-1} \right)}^{2}}$
Therefore, roots of this equation are –
$\text{4x-1=0}$ or $\text{4x-1=0}$
i.e $\text{x=}\dfrac{1}{4}$ or $\text{x=}\dfrac{1}{4}$
v. $\text{100}{{\text{x}}^{\text{2}}}\text{-20x+1=0}$
Ans: $\text{100}{{\text{x}}^{\text{2}}}\text{-20x+1=0}$
$\Rightarrow 100{{\text{x}}^{\text{2}}}\text{-10x-10x+1}$
$\Rightarrow 10\text{x}\left( \text{10x-1} \right)-1\left( \text{10x-1} \right)$
\[\Rightarrow \left( \text{10x-1} \right)\left( \text{10x-1} \right)\]
Therefore, roots of this equation are –
\[\left( \text{10x-1} \right)=0\]or \[\left( \text{10x-1} \right)=0\]
i.e $\text{x=}\dfrac{1}{10}$ or $\text{x=}\dfrac{1}{10}$
2. Solve the problems given in Example 1
i. John and Jivanti together have $\text{45}$ marbles. Both of them lost $\text{5}$ marbles each, and the product of the number of marbles they now have is $\text{124}$. Find out how many marbles they had to start with.
Ans: Let the number of john’s marbles be $\text{x}$.
Thus, number of Jivanti’s marble be $\text{45-x}$.
According to question i.e,
After losing $\text{5}$ marbles.
Number of john’s marbles be $\text{x-5}$
And number of Jivanti’s marble be $\text{40-x}$.
Therefore, $\left( \text{x-5} \right)\left( \text{40-x} \right)\text{=124}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-45x+324=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-36x-9x+324=0}$
$\Rightarrow \text{x}\left( \text{x-36} \right)\text{-9}\left( \text{x-36} \right)\text{=0}$
$\Rightarrow \left( \text{x-36} \right)\left( \text{x-9} \right)\text{=0}$
So now,
Case 1- If $\text{x-36=0}$ i.e $\text{x=36}$
So, the number of john’s marbles be $\text{36}$.
Thus, number of Jivanti’s marble be $\text{9}$.
Case 2- If $\text{x-9=0}$ i.e $\text{x=9}$
So, the number of john’s marbles be $9$.
Thus, number of Jivanti’s marble be $36$.
ii. A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be $\text{55}$ minus the number of toys produced in a day. On a particular day, the total cost of production was Rs $\text{750}$. Find out the number of toys produced on that day.
Ans: Let the number of toys produced be $\text{x}$.
Therefore, Cost of production of each toy be $\text{Rs}\left( \text{55-x} \right)$.
Thus, $\left( \text{55-x} \right)\text{x=750}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-55x+750=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-25x-30x+750=0}$
$\Rightarrow \text{x}\left( \text{x-25} \right)-30\left( \text{x-25} \right)\text{=0}$
$\Rightarrow \left( \text{x-25} \right)\left( \text{x-30} \right)\text{=0}$
Case 1- If $\text{x-25=0}$ i.e $\text{x=25}$
So, the number of toys be $25$.
Case 2- If $\text{x-30=0}$ i.e $\text{x=30}$
So, the number of toys be $30$.
3. Find two numbers whose sum is $\text{27}$ and product is $\text{182}$.
Ans: Let the first number be $\text{x}$ ,
Thus, the second number be $\text{27-x}$.
Therefore,
$\text{x}\left( \text{27-x} \right)\text{=182}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-27x+182=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-13x-14x+182=0}$
$\Rightarrow \text{x}\left( \text{x-13} \right)-14\left( \text{x-13} \right)\text{=0}$
$\Rightarrow \left( \text{x-13} \right)\left( \text{x-14} \right)\text{=0}$
Case 1- If $\text{x-13=0}$ i.e $\text{x=13}$
So, the first number be $13$ ,
Thus, the second number be $\text{14}$.
Case 2- If $\text{x-14=0}$ i.e $\text{x=14}$
So, the first number be $\text{14}$.
Thus, the second number be$13$.
4. Find two consecutive positive integers, sum of whose squares is $\text{365}$.
Ans: Let the consecutive positive integers be $\text{x}$ and $\text{x+1}$.
Thus, ${{\text{x}}^{\text{2}}}\text{+}{{\left( \text{x+1} \right)}^{\text{2}}}\text{=365}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{2}}}+1+2\text{x=365}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+2x-364=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+x-182=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+14x-13x-182=0}$
$\Rightarrow \text{x}\left( \text{x+14} \right)-13\left( \text{x+14} \right)\text{=0}$
$\Rightarrow \left( \text{x+14} \right)\left( \text{x-13} \right)\text{=0}$
Case 1- If $\text{x+14=0}$ i.e $\text{x=-14}$.
This case is rejected because number is positive.
Case 2- If $\text{x-13=0}$ i.e $\text{x=13}$
So, the first number be $\text{13}$.
Thus, the second number be $14$.
Hence, the two consecutive positive integers are $\text{13}$ and $14$.
5. The altitude of a right triangle is $\text{7 cm}$ less than its base. If the hypotenuse is $\text{13 cm}$, find the other two sides.
Ans: Let the base of the right-angled triangle be $\text{x cm}$.
Its altitude be $\left( \text{x-7} \right)\text{cm}$.
Thus, by pythagores theorem-
$\text{bas}{{\text{e}}^{\text{2}}}\text{+altitud}{{\text{e}}^{\text{2}}}\text{=hypotenus}{{\text{e}}^{\text{2}}}$
\[\therefore {{\text{x}}^{\text{2}}}\text{+}{{\left( \text{x-7} \right)}^{\text{2}}}\text{=1}{{\text{3}}^{\text{2}}}\]
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{2}}}+49-14\text{x=169}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{-14x-120=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-7x-60=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+12x+5x-60=0}$
$\Rightarrow \text{x}\left( \text{x-12} \right)+5\left( \text{x-12} \right)\text{=0}$
$\Rightarrow \left( \text{x-12} \right)\left( \text{x+5} \right)\text{=0}$
Case 1- If $\text{x-12=0}$ i.e $\text{x=12}$.
So, the base of the right-angled triangle be $\text{12 cm}$ and Its altitude be $\text{5cm}$
Case 2- If $\text{x+5=0}$ i.e $\text{x=-5}$
This case is rejected because side is always positive.
Hence, the base of the right-angled triangle be $\text{12 cm}$ and Its altitude be $\text{5cm}$.
6. A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was $\text{3}$ more than twice the number of articles produced on that day. If the total cost of production on that day was Rs $\text{90}$, find the number of articles produced and the cost of each article.
Ans: Let the number of articles produced be $\text{x}$.
Therefore, cost of production of each article be $\text{Rs}\left( \text{2x+3} \right)$.
Thus, $\text{x}\left( \text{2x+3} \right)\text{=90}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+3x-90=0}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+15x-12x-90=0}$
$\Rightarrow \text{x}\left( \text{2x+15} \right)-6\left( \text{2x+15} \right)\text{=0}$
$\Rightarrow \left( \text{2x+15} \right)\left( \text{x-6} \right)\text{=0}$
Case 1- If $\text{2x-15=0}$ i.e $\text{x=}\dfrac{-15}{2}$.
This case is rejected because number of articles is always positive.
Case 2- If $\text{x-6=0}$ i.e $\text{x=6}$
Hence, the number of articles produced be $6$.
Therefore, cost of production of each article be $\text{Rs15}$.
Exercise 4.3
1. Find the nature of the roots of the following quadratic equations. If the real roots exist, find them-
i. $\text{2}{{\text{x}}^{\text{2}}}\text{-3x+5=0}$
Ans: For a quadratic equation $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Where Discriminant $\text{=}{{\text{b}}^{\text{2}}}\text{-4ac}$
Then –
Case 1- If ${{\text{b}}^{\text{2}}}\text{-4ac>0}$ then there will be two distinct real roots.
Case 2- If ${{\text{b}}^{\text{2}}}\text{-4ac=0}$ then there will be two equal real roots.
Case 3- If ${{\text{b}}^{\text{2}}}\text{-4ac<0}$ then there will be no real roots.
Thus, for $\text{2}{{\text{x}}^{\text{2}}}\text{-3x+5=0}$ .
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=2}$, $\text{b=-3}$, $\text{c=5}$.
Discriminant $\text{=}{{\left( \text{-3} \right)}^{\text{2}}}\text{-4}\left( \text{2} \right)\left( \text{5} \right)$
$\text{=9-40}$
$\text{=-31}$
Since, Discriminant: ${{\text{b}}^{\text{2}}}\text{-4ac < 0}$.
Therefore, there is no real root for the given equation.
ii. $\text{3}{{\text{x}}^{\text{2}}}\text{-4}\sqrt{\text{3}}\text{x+4=0}$
Ans: For a quadratic equation $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Where Discriminant $\text{=}{{\text{b}}^{\text{2}}}\text{-4ac}$
Then –
Case 1- If ${{\text{b}}^{\text{2}}}\text{-4ac > 0}$ then there will be two distinct real roots.
Case 2- If ${{\text{b}}^{\text{2}}}\text{-4ac=0}$ then there will be two equal real roots.
Case 3- If ${{\text{b}}^{\text{2}}}\text{-4ac < 0}$ then there will be no real roots.
Thus, for $\text{3}{{\text{x}}^{\text{2}}}\text{-4}\sqrt{\text{3}}\text{x+4=0}$ .
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=3}$, $\text{b=-4}\sqrt{\text{3}}$, $\text{c=4}$.
Discriminant $\text{=}{{\left( \text{-4}\sqrt{\text{3}} \right)}^{\text{2}}}\text{-4}\left( \text{3} \right)\left( \text{4} \right)$
$\text{=48-48}$
$\text{=0}$
Since, Discriminant: ${{\text{b}}^{\text{2}}}\text{-4ac=0}$.
Therefore, there is equal real root for the given equation and the roots are-
$\dfrac{\text{-b}}{\text{2a}}$ and $\dfrac{\text{-b}}{\text{2a}}$.
Hence, roots are-
$\dfrac{\text{-b}}{\text{2a}}\text{=}\dfrac{\text{-}\left( \text{-4}\sqrt{\text{3}} \right)}{\text{6}}$
$\text{=}\dfrac{\text{4}\sqrt{\text{3}}}{\text{6}}$
\[\text{=}\dfrac{\text{2}\sqrt{\text{3}}}{3}\]
Therefore, roots are \[\dfrac{\text{2}\sqrt{\text{3}}}{3}\] and \[\dfrac{\text{2}\sqrt{\text{3}}}{3}\].
iii. $\text{2}{{\text{x}}^{\text{2}}}\text{-6x+3=0}$
Ans: For a quadratic equation $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$.
Where Discriminant $\text{=}{{\text{b}}^{\text{2}}}\text{-4ac}$
Then –
Case 1- If ${{\text{b}}^{\text{2}}}\text{-4ac>0}$ then there will be two distinct real roots.
Case 2- If ${{\text{b}}^{\text{2}}}\text{-4ac=0}$ then there will be two equal real roots.
Case 3- If ${{\text{b}}^{\text{2}}}\text{-4ac<0}$ then there will be no real roots.
Thus, for $\text{2}{{\text{x}}^{\text{2}}}\text{-6x+3=0}$ .
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=2}$, $\text{b=-6}$, $\text{c=3}$.
Discriminant $\text{=}{{\left( \text{-6} \right)}^{\text{2}}}\text{-4}\left( \text{2} \right)\left( \text{3} \right)$
$\text{=36-24}$
$\text{=12}$
Since, Discriminant: ${{\text{b}}^{\text{2}}}\text{-4ac>0}$.
Therefore, distinct real roots exists for the given equation and the roots are-
$\text{x=}\dfrac{\text{-b }\!\!\pm\!\!\text{ }\sqrt{{{\text{b}}^{\text{2}}}\text{-4ac}}}{\text{2a}}$
Hence, roots are-
$\text{x=}\dfrac{\text{-}\left( \text{-6} \right)\text{ }\!\!\pm\!\!\text{ }\sqrt{{{\left( \text{-6} \right)}^{\text{2}}}\text{-4}\left( \text{2} \right)\left( \text{3} \right)}}{\text{4}}$
$\text{=}\dfrac{\text{6 }\!\!\pm\!\!\text{ }\sqrt{\text{36-24}}}{\text{4}}$
$\text{=}\dfrac{\text{6 }\!\!\pm\!\!\text{ }\sqrt{\text{12}}}{\text{4}}$
$\text{=}\dfrac{\text{6 }\!\!\pm\!\!\text{ 2}\sqrt{\text{3}}}{\text{4}}$
$\text{=}\dfrac{\text{3 }\!\!\pm\!\!\text{ }\sqrt{\text{3}}}{\text{2}}$
Therefore, roots are $\dfrac{\text{3+}\sqrt{\text{3}}}{\text{2}}$ and $\dfrac{\text{3-}\sqrt{\text{3}}}{\text{2}}$.
2. Find the values of $\text{k}$ for each of the following quadratic equations, so that they have two equal roots.
i. $\text{2}{{\text{x}}^{\text{2}}}\text{+kx+3=0}$
Ans: If a quadratic equation $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$ has two equal roots, then its discriminant will be $\text{0}$ i.e., ${{\text{b}}^{\text{2}}}\text{-4ac=0}$
So, for $\text{2}{{\text{x}}^{\text{2}}}\text{+kx+3=0}$.
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=2}$, $\text{b=k}$, $\text{c=3}$.
Discriminant $\text{=}{{\left( \text{k} \right)}^{\text{2}}}\text{-4}\left( \text{2} \right)\left( \text{3} \right)$
$\text{=}{{\text{k}}^{2}}-24$
For equal roots-
${{\text{b}}^{\text{2}}}\text{-4ac=0}$
$\therefore {{\text{k}}^{\text{2}}}\text{-24=0}$
$\Rightarrow {{\text{k}}^{\text{2}}}\text{=24}$
$\Rightarrow \text{k=}\sqrt{\text{24}}$
$\Rightarrow \text{k=}\pm \text{2}\sqrt{\text{6}}$
ii. $\text{kx}\left( \text{x-2} \right)\text{+6=0}$
Ans: If a quadratic equation $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=0}$ has two equal roots, then its discriminant will be $\text{0}$ i.e., ${{\text{b}}^{\text{2}}}\text{-4ac=0}$
So, for $\text{kx}\left( \text{x-2} \right)\text{+6=0}$
$\Rightarrow \text{k}{{\text{x}}^{\text{2}}}\text{-2kx+6=0}$
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=k}$, $\text{b=-2k}$, $\text{c=6}$.
Discriminant $\text{=}{{\left( \text{-2k} \right)}^{\text{2}}}\text{-4}\left( \text{k} \right)\left( \text{6} \right)$
$\text{=4}{{\text{k}}^{\text{2}}}\text{-24k}$
For equal roots-
${{\text{b}}^{\text{2}}}\text{-4ac=0}$
$\therefore \text{4}{{\text{k}}^{\text{2}}}\text{-24k=0}$
$\Rightarrow \text{4k}\left( \text{k-6} \right)\text{=0}$
$\Rightarrow \text{k=0 or k=6}$
But $\text{k}$ cannot be zero. Thus, this equation has two equal roots when $\text{k}$ should be $\text{6}$ .
3. Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is $\text{800}{{\text{m}}^{\text{2}}}$ ? If so, find its length and breadth.
Ans: Let the breadth of mango grove be $\text{x}$.
So, length of mango grove will be $\text{2x}$.
Hence, Area of mango grove is $=\left( \text{2x} \right)\text{x}$
$\text{=2}{{\text{x}}^{\text{2}}}$.
So, $\text{2}{{\text{x}}^{\text{2}}}\text{=800}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{=400}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-400=0}$
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=1}$, $\text{b=0}$, $\text{c=400}$.
Discriminant $\text{=}{{\left( \text{0} \right)}^{\text{2}}}\text{-4}\left( \text{1} \right)\left( \text{-400} \right)$
$\text{=1600}$
Since, Discriminant: ${{\text{b}}^{\text{2}}}\text{-4ac>0}$.
Therefore, distinct real roots exist for the given equation and the roots are-
$\text{x=}\dfrac{\text{-b }\!\!\pm\!\!\text{ }\sqrt{{{\text{b}}^{\text{2}}}\text{-4ac}}}{\text{2a}}$
Hence, roots are-
$\text{x=}\dfrac{\text{-}\left( 0 \right)\text{ }\!\!\pm\!\!\text{ }\sqrt{{{\left( 0 \right)}^{\text{2}}}\text{-4}\left( 1 \right)\left( -400 \right)}}{2}$
$\text{=}\dfrac{\pm \sqrt{\text{1600}}}{2}$
$\text{=}\dfrac{\text{ }\!\!\pm\!\!\text{ 40}}{2}$
$\text{=}\pm \text{20}$
Since, length cannot be negative.
Therefore, breadth of the mango grove is $\text{20m}$.
And length of the mango grove be $\text{2}\left( \text{20} \right)\text{m}$ i.e., $\text{40m}$.
4. Is the following situation possible? If so, determine their present ages. The sum of the ages of two friends is $\text{20}$ years. Four years ago, the product of their ages in years was $\text{48}$.
Ans: Let the age of one friend be $\text{x years}$.
So, age of the other friend will be $\left( \text{20-x} \right)\text{years}$.
Thus, four years ago, the age of one friend be $\left( \text{x-4} \right)\text{years}$.
And age of the other friend will be $\left( \text{16-x} \right)\text{years}$.
Hence, according to question-
$\left( \text{x-4} \right)\left( \text{16-x} \right)\text{=48}$
$\Rightarrow \text{16x-64-}{{\text{x}}^{\text{2}}}\text{+4x=48}$
$\Rightarrow 20\text{x-112-}{{\text{x}}^{\text{2}}}\text{=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-20x+112-=0}$
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=1}$, $\text{b=-20}$, $\text{c=112}$.
Discriminant $\text{=}{{\left( \text{-20} \right)}^{\text{2}}}\text{-4}\left( \text{1} \right)\left( \text{112} \right)$
$\text{=400-448}$
$\text{=-48}$
Since, Discriminant: ${{\text{b}}^{\text{2}}}\text{-4ac <0}$.
Therefore, there is no real root for the given equation and hence, this situation is not possible.
5. Is it possible to design a rectangular park of perimeter $\text{80 m}$ and area $\text{400}{{\text{m}}^{\text{2}}}$? If so find its length and breadth.
Ans: Let the length of the park be $\text{x m}$ and breadth of the park be $\text{x m}$.
Thus, $\text{Perimeter=2}\left( \text{x+y} \right)$.
Hence, according to question-
$\text{2}\left( \text{x+y} \right)\text{=80}$
$\Rightarrow \text{x+y=40}$
$\Rightarrow \text{y=40-x}$.
Now, $\text{Area=x }\!\!\times\!\!\text{ y}$.
Substituting value of y.
$\text{Area=x}\left( \text{40-x} \right)$
So, according to question-
$\text{x}\left( \text{40-x} \right)\text{=400}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-40x+400=0}$
On comparing this equation with $\text{a}{{\text{x}}^{\text{2}}}\text{+bx+c=}0$.
So, $\text{a=1}$, $\text{b=-40}$, $\text{c=400}$.
Discriminant $\text{=}{{\left( \text{-40} \right)}^{\text{2}}}\text{-4}\left( \text{1} \right)\left( 400 \right)$
$\text{=1600-1600}$
$\text{=0}$
Since, Discriminant: ${{\text{b}}^{\text{2}}}\text{-4ac=0}$.
Therefore, there is equal real roots for the given equation and hence, this situation is possible.
Hence, roots are-
$\dfrac{\text{-b}}{\text{2a}}\text{=}\dfrac{\text{-}\left( -40 \right)}{2}$
$\text{=}\dfrac{\text{40}}{2}$
\[\text{=20}\]
Therefore, length of park is $\text{x=20m}$ .
And breadth of park be $\text{y=}\left( \text{40-20} \right)\text{m}$ i.e., $\text{y=20m}$.
Important Points from NCERT Class 10 Quadratic Equations
A quadratic equation can be represented as:
ax2 + bx + c = 0
Where x is the variable of the equation and a, b and c are the real numbers. Also, a≠0.
The nature of roots of a quadratic equation ax2 + bx + c = 0 can be find as:
Condition | Nature of Roots |
b2 – 4ac >0 | Two distinct real roots |
b2 – 4ac = 0 | Two equal roots |
b2 – 4ac <0 | No real roots |
A real number α be root of quadratic equations ax2 + bx + c = 0 if and only if
aα2 + bα + c = 0.
Quadratic equations are very important in real-life situations. Learn all the concepts deeply and understand each topic conceptually. And, now let us solve questions related to quadratic equations.
Maths Class 10 Quadratic Equations Mind Map
Relation Between the Zeroes of a Quadratic Equation and the Coefficient of a Quadratic Equation
If α and β are zeroes of the quadratic equation $ax^2 + bx + c = 0$, where a, b, and c are real numbers and a ≠ 0, then
$\alpha + \beta = -\dfrac{b}{a}$
$\text{sum of zeros} = -\dfrac{\text{coefficient of x}}{\text{coefficient of }x^2}$
$\alpha \beta = \dfrac{c}{a}$
$\text{product of zeros} = -\dfrac{\text{constant term}}{\text{coefficient of }x^2}$
Methods of Solving a Quadratic Equation
The following are the methods that are used to solve quadratic equations:
(i) Factorization; (ii) Completing the Square; (iii) Quadratic Formula
Methods of Factorization
In this method, we find the roots of a quadratic equation $(ax^2 + bx + c = 0)$ by factorizing LHS into two linear factors and equating each factor to zero, e.g.,
$6x^2 - x - 2 = 0$
$\Rightarrow 6x^2 + 3x - 4x - 2 = 0$ …(i)
$\Rightarrow 3x (2x + 1) - 2(2x + 1) = 0$
$\Rightarrow (3x - 2) (2x + 1) = 0$
$\Rightarrow 3x - 2 = 0$ or $2x + 1 = 0$
Therefore $x = \dfrac{2}{3}$ or $x = -\dfrac{-1}{2}$
Method of Completing the Square
This is the method of converting the LHS of a quadratic equation that is not a perfect square into the sum or difference of a perfect square and a constant by adding and subtracting the terms.
Quadratic Formula
Consider a quadratic equation: ax2 + bx + c = 0.
If b2 – 4ac ≥ 0, then the roots of the above equation are given by:
$x = -\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Overview of Deleted Syllabus for CBSE Class 10 Maths Chapter 4 Quadratic Equation
Chapter | Dropped Topics |
Quadratic Equation | 4.4 Solution of a quadratic equation by completing the squares |
Class 10 Maths Chapter 4: Exercise Breakdown
Exercise | Number of Questions |
Exercise 4.1 Solutions | 2 Questions & Solutions (1 Short Answer, 1 Long Answer) |
Exercise 4.2 Solutions | 6 Questions & Solutions (6 Short Answers) |
Exercise 4.3 Solutions | 5 Questions & Solutions (2 Short Answers, 3 Long Answer) |
Conclusion
NCERT Solutions for Class 10 Maths Chapter 4 - provides a comprehensive guide to understanding quadratic equations. This chapter is important for students because it teaches topics that are fundamental to advanced mathematics. The solutions describe how to solve quadratic equations, apply the quadratic formula, and investigate the nature of the roots using the discriminant. For effective exam preparation, focus on understanding formula derivation and applying the many types of problem-solving approaches described in this chapter. Last year, four to six questions from this area featured in the board exams, demonstrating its importance. These answers are precisely crafted to help students succeed by improving their problem-solving skills and conceptual understanding.
Other Study Materials of CBSE Class 10 Maths Quadratic Equation
Sr.No | Important Links for Chapter 4 Quadratic Equation |
1 | |
2 | |
3 | |
4 | |
5 |
Chapter-Specific NCERT Solutions for Class 10 Maths
Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S.No. | NCERT Solutions Class 10 Chapter-wise Maths PDF |
1 | |
2 | |
3 | Chapter 3 - Pair Of Linear Equations In Two Variables Solutions |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
NCERT Study Resources for Class 10 Maths
For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.
FAQs on NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations 2025-26
1. What is a quadratic equation as per Class 10 Maths?
A quadratic equation is a polynomial equation of the second degree in one variable. Its standard form is ax² + bx + c = 0, where x is the variable, a, b, and c are real numbers, and 'a' cannot be zero.
2. How many methods are there to solve quadratic equations in Chapter 4?
According to the NCERT Class 10 Maths textbook, there are three primary methods to find the roots of a quadratic equation: factorisation, completing the square, and using the quadratic formula. Each method is useful for different types of equations.
3. What is the quadratic formula?
The quadratic formula is a direct method to find the roots of any quadratic equation (ax² + bx + c = 0). The formula is x = [-b ± √(b² - 4ac)] / 2a. It gives the values of x that satisfy the equation.
4. What is the role of the discriminant in a quadratic equation?
The discriminant (D = b² - 4ac) determines the nature of the roots. If D > 0, the equation has two distinct real roots. If D = 0, it has two equal real roots. If D < 0, it has no real roots.
5. How do the NCERT Solutions for Quadratic Equations Class 10 help students?
NCERT Solutions for this chapter provide accurate, step-by-step answers for every textbook question. This helps students verify their methods, understand complex word problems, and prepare a strong foundation for their board exams by following the correct solving pattern.
6. Where can I find a Free PDF for Class 10 Maths Chapter 4 NCERT Solutions?
Vedantu provides a Free PDF download for the NCERT Solutions for Class 10 Maths Chapter 4. This PDF contains detailed, expert-verified answers for all exercise questions, which students can access anytime for offline study and revision.
7. Are all exercise questions from Chapter 4 covered in these solutions?
Yes, the NCERT Solutions for Class 10 Maths Chapter 4 on Vedantu cover every single question from all the exercises in the chapter. This ensures that you have a reliable resource for homework, self-study, and complete exam preparation.
8. How are word problems on quadratic equations for Class 10 solved?
Word problems are solved by first translating the given situation into a standard quadratic equation (ax² + bx + c = 0). After forming the equation, you can use methods like factorisation or the quadratic formula to find the solution.
9. Is it necessary to check the solutions of a quadratic equation?
While not always mandatory, checking your solutions (roots) by substituting them back into the original equation is a good practice. It helps confirm their accuracy, especially in complex word problems where the context of the answer matters.
10. Can a quadratic equation have more than two roots?
No, a quadratic equation can have at most two roots. The number of roots is determined by the degree of the polynomial, which for a quadratic equation is two. The roots can be real and distinct, real and equal, or not real.

















