Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 10 Maths Chapter 6 Triangles

ffImage
banner

NCERT Solutions for Class 10 Chapter 6 Maths Triangles - FREE PDF Download

NCERT Solutions for Class 10 Maths Chapter 6 Triangles PDF is profound. The PDF of Class 10 Maths Chapter 6 NCERT Solutions has been prepared by expert mathematicians at Vedantu after thorough research on the subject matter. All the solutions for Triangles Class 10 NCERT Solutions provided here are written in a simple and lucid manner. With the aid of these NCERT Solutions for Class 10 Chapter 6 of Maths, students can not only improve their knowledge but also aspire to score better in their examinations.

toc-symbolTable of Content
toggle-arrow


Glance of NCERT Solutions for Class 10 Maths Chapter 6 Triangles | Vedantu

  • In Class 10 Maths Ch 6, we will learn about triangles, Similarity of Triangles, types of Triangles.

  • Cover terms that are related to triangles along with that we will learn how to calculate the area of a triangle by using a simple formula 

  • This article contains chapter notes, important questions, exemplar solutions, exercises, and video links for Chapter 6 - Triangles, which you can download as PDFs.

  • There are three exercises (29 fully solved questions) in class 10th Maths chapter 6 Triangles.


Access Exercise Wise NCERT Solutions for Chapter 6 Maths Class 10

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 10 Maths Chapter 6 Triangles
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES Class 10 in One Shot (Complete Chapter) | CBSE 10 Maths Chapter 6 - Term 1 Exam | Vedantu
7.8K likes
134.1K Views
3 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES L-1 (Similarity and Criteria for Similarity) CBSE Class 10 Math Chapter 6 | 1st Term Exam
6.3K likes
166.9K Views
3 years ago
More Free Study Material for Triangles
icons
Revision notes
872.4k views 14k downloads
icons
Important questions
782.1k views 14k downloads
icons
Ncert books
798.6k views 13k downloads

Exercises under NCERT Solutions for Class 10 Maths Chapter 6 Triangles

NCERT Solutions for Class 10 Maths Chapter 6, "Triangles," is a chapter that deals with the properties and classification of triangles. The chapter contains six exercises, each covering a different aspect of the topic. Below is a brief explanation of each exercise:


Exercise 6.1: In this exercise, you will be introduced to the basic concepts of triangles, including the definition, elements, types, and angles. You will also learn about congruent triangles and the criteria for their congruence.


Exercise 6.2: This exercise focuses on the properties of triangles, such as the angle sum property, the exterior angle property, and the inequality theorem. You will also learn about the Pythagorean theorem and its applications.


Exercise 6.3: In this exercise, you will learn about the similarity of triangles, including the criteria for similarity, the theorem of basic proportionality, and the application of similarity in practical situations.


Access NCERT Solutions for Class 10 Maths Chapter 6 Triangles

Exercise 6.1

1. Fill in the Blanks Using Correct Word Given in the Brackets:

i. All circles are ______. (congruent, similar)

Ans: Similar.


ii. All squares are ______. (similar, congruent)

Ans: Similar.


iii. All ______ triangles are similar. (isosceles, equilateral)

Ans: Equilateral.


iv. Two polygons of the same number of sides are similar, if their corresponding angles are ______ (equal, proportional)

Ans: Equal


And their corresponding sides are ______. (equal, proportional)

Ans: Proportional.


2. Give Two Different Examples of Pair of -

i. Similar Figures

Ans: The two examples for similar figures are 

a. Two equilateral triangles having sides \[\text{2cm}\] and $\text{4cm}$.


Two equilateral triangles

                                

b. Two squares having sides \[\text{2cm}\] and $\text{4cm}$.


Two squares having sides


ii. Non-Similar Figures

Ans: The two examples for non - similar figures are

a. A Trapezium and Square


A Trapezium and Square


b. A triangle and a Paralellogram


A triangle and a Paralellogram


3. State whether the following quadrilaterals are similar or not.


The given quadrilaterals PQRS and ABCD


Ans: The given quadrilaterals $PQRS$ and $ABCD$ are not similar because their corresponding sides are proportional, that is, $1:2$ but their corresponding angles are not equal.


Exercise 6.2

1. (i) From the figure (i) , if \[\text{DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  BC}\]. Find \[\text{EC}\].

basic proportionality theorem



Ans: Let us assume that \[\text{EC = x cm}\]

Given that $\,\text{DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  BC}$

But from basic proportionality theorem, we know that

$\dfrac{\text{AD}}{\text{DB}}$ $=$ $\dfrac{\text{AE}}{\text{EC}}$

$\dfrac{\text{1}\text{.5}}{\text{3}}$ $=$ $\dfrac{\text{1}}{\text{x}}$

\[\text{x = }\dfrac{\text{3 x 1}}{\text{1}\text{.5}}\]

\[x\text{ }=\text{ }2\]

\[\therefore \]\[\text{EC = 2 cm}\]

(ii) From the figure (ii) , if \[\text{DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  BC}\]. \[\text{AD}\] in (ii).

assume that.



Ans: 

Let us assume that \[\text{AD = x cm}\]

Given that \[\text{DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  BC}\text{.}\]

But from basic proportionality theorem we know that

$\dfrac{\text{AD}}{\text{DB}}$ $\text{=}$ $\dfrac{\text{AE}}{\text{EC}}$

$ \dfrac{\text{x}}{\text{7}\text{.2}}\text{ = }\dfrac{\text{1}\text{.8}}{\text{5}\text{.4}} $

$ \text{x = }\dfrac{\text{1}\text{.8 x 7}\text{.2}}{\text{5}\text{.4}} $

$ \text{x = 2}\text{.4} $

\[\therefore \text{AD = 2}\text{.4}\]$\text{cm}$

2. (i) In a $\text{ }\!\!\Delta\!\!\text{ PQR,}$ \[\text{E}\] and \[\text{F}\] are any two points on the sides \[\text{PQ}\] and \[\text{PR}\] respectively. State whether \[\text{EF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  QR}\] for \[\text{PE = 3}\text{.9 cm, EQ = 3 cm, PF = 3}\text{.6 cm}\] and \[\text{FR = 2}\text{.4 cm}\]

Ans:

points on the sides



Given, \[\text{PE = 3}\text{.9 cm, EQ = 3 cm, PF = 3}\text{.6 cm}\],\[\text{FR = 2}\text{.4 cm}\]

$\dfrac{\text{PF}}{\text{EQ}}$ $\text{=}$$\dfrac{\text{3}\text{.9}}{\text{3}}$\[\text{ }\!\!~\!\!\text{ = 1}\text{.3}\]

$\dfrac{\text{PF}}{\text{FR}}$ \[\text{=}\] $\dfrac{\text{3}\text{.6}}{\text{2}\text{.4}}$ \[\text{= 1}\text{.5}\]

Hence, $\dfrac{\text{PE}}{\text{EQ}}$ \[\ne \] $\dfrac{\text{PF}}{\text{FR}}$

Therefore , \[\text{EF}\] is parallel to \[\text{QR}\].

(ii) In a $\text{ }\!\!\Delta\!\!\text{ PQR,}$ \[\text{E}\] and \[\text{F}\] are any two points on the sides \[\text{PQ}\] and \[\text{PR}\] respectively. State whether \[\text{EF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  QR}\] for \[\text{PE = 4 cm, QE = 4}\text{.5 cm, PF = 8 cm}\] and \[\text{RF = 9 cm}\]

 Ans:

points on the sides 2



\[\text{PE = 4 cm,QE = 4}\text{.5 cm,PF = 8 cm,RF = 9 cm}\]

$\dfrac{\text{PE}}{\text{EQ}}\text{ = }\dfrac{\text{4}}{\text{4}\text{.5}}\text{ = }\dfrac{\text{8}}{\text{9}} $

$ \dfrac{\text{PF}}{\text{FR}}\text{ = }\dfrac{\text{8}}{\text{9}} $

Hence, $\dfrac{\text{PE}}{\text{EQ}}\text{ = }\dfrac{\text{PF}}{\text{FR}}$

Therefore, \[\text{EF}\] is parallel to \[\text{QR}\].

(iii) In a $\Delta PQR,$ \[\text{E}\] and \[\text{F}\] are any two points on the sides \[\text{PQ}\] and \[\text{PR}\] respectively. State whether \[\text{EF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  QR}\] for \[\text{PQ = 1}\text{.28 cm, PR = 2}\text{.56 cm, PE = 0}\text{.18 cm}\] and \[\text{PF = 0}\text{.63 cm}\]

Ans:

any two points on the sides PQ



\[\text{PQ = 1}\text{.28 cm,PR = 2}\text{.56 cm,PE = 0}\text{.18 cm,PF = 0}\text{.36 cm}\]

$\dfrac{\text{PE}}{\text{PQ}}\text{ = }\dfrac{\text{0}\text{.18}}{\text{1}\text{.28}}\text{ = }\dfrac{\text{18}}{\text{128}}\text{ = }\dfrac{\text{9}}{\text{64}} $

$\dfrac{\text{PF}}{\text{PR}}\text{ = }\dfrac{\text{0}\text{.36}}{\text{2}\text{.56}}\text{ = }\dfrac{\text{9}}{\text{64}} $

Hence, $\dfrac{\text{PE}}{\text{PQ}}\text{ = }\dfrac{\text{PF}}{\text{PR}}$

Therefore, \[\text{EF}\] is parallel to \[\text{QR}\].

3. In the figure given below, if sides \[\text{LM  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CB}\] and \[\text{LN  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CD,}\]Show that $\dfrac{\text{AM}}{\text{AB}}\text{ = }\dfrac{\text{AN}}{\text{AD}}$

the figure given below, if sides LM



Ans:

Given that in the figure, \[\text{LM  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CB}\]

But from basic proportionality theorem, we know that

$\dfrac{\text{AM}}{\text{AB}}\text{ = }\dfrac{\text{AL}}{\text{AC}}\text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ (i)}$

Also, \[\text{LN  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CD}\]

$\therefore \dfrac{\text{AN}}{\text{AD}}\text{ = }\dfrac{\text{AL}}{\text{AC}}\text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ (ii)}$

From (i) and (ii), we get

$\dfrac{\text{AM}}{\text{AB}}\text{ = }\dfrac{\text{AN}}{\text{AD}}$

4. In the figure given below, if sides $\text{DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AC}$ and $\text{DF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AE}\text{.}$Show that $\dfrac{\text{BF}}{\text{FE}}\text{ = }\dfrac{\text{BE}}{\text{EC}}$

the figure given below, if sides DE



Ans:

In

$\text{ }\!\!\Delta\!\!\text{ ABC,DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AC}$ 

$\therefore \dfrac{\text{BD}}{\text{DA}}\text{ = }\dfrac{\text{BE}}{\text{EC}} $

(By Basic proportionality theorem)

$\text{In}$ 

$\text{ }\!\!\Delta\!\!\text{ BAE,DF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AE} $

$ \therefore \dfrac{\text{BD}}{\text{DA}}\text{ = }\dfrac{\text{BE}}{\text{FE}} $

By Basic proportionality theorem

From (i) and (ii),we get

$\dfrac{\text{BE}}{\text{EC}}\text{ = }\dfrac{\text{BF}}{\text{FE}}$

5. In the figure given below, if sides $\text{DE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  OQ}$ and $\text{DF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  OR}$, Show that $\text{EF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  QR}$

if sides DE



Ans:

$\text{In}$ 

$ \text{ }\!\!\Delta\!\!\text{ POQ,DE }\!\!|\!\!\text{  }\!\!|\!\!\text{ OQ} $

$ \therefore \dfrac{\text{PE}}{\text{EQ}}\text{=}\dfrac{\text{PD}}{\text{DO}} $              ……………………(i) By basic proportionality theorem$\text{In}$

$ \text{ }\!\!\Delta\!\!\text{ POR,DF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  OR} $

$ \therefore \dfrac{\text{PF}}{\text{FR}}\text{=}\dfrac{\text{PD}}{\text{DO}}$

……………………(ii) By basic proportionality theorem

From (i) and (ii),we get

$\dfrac{\text{PE}}{\text{EQ}}\text{ = }\dfrac{\text{PF}}{\text{FR}} $

$ \therefore \text{EF  }\!\!|\!\!\text{  }\!\!|\!\!\text{  QR} $                             Converse of Basic proportionality theorem

6.In the figure given below, \[\text{A, Band C}\] are points on \[\text{OP, OQ and OR}\] respectively such that \[\text{AB  }\!\!|\!\!\text{  }\!\!|\!\!\text{  PQ}\] and \[\text{AC  }\!\!|\!\!\text{  }\!\!|\!\!\text{  PR}\]. Prove that \[\text{BC  }\!\!|\!\!\text{  }\!\!|\!\!\text{  QR}\].

the figure given below, A, B and C



Ans:

In

$\text{ }\!\!\Delta\!\!\text{ POQ,AB  }\!\!|\!\!\text{  }\!\!|\!\!\text{  PQ} $

$\therefore \dfrac{\text{OA}}{\text{OP}}\text{ = }\dfrac{\text{OB}}{\text{PQ}} $

$……………………(i) By basic proportionality theorem

$\text{In}$ 

$\text{ }\!\!\Delta\!\!\text{ POR,AC  }\!\!|\!\!\text{  }\!\!|\!\!\text{  PR} $

\[\therefore \dfrac{\text{OA}}{\text{OP}}\text{ = }\dfrac{\text{OC}}{\text{CR}}\]  ………………(ii) By basic proportionality theorem

From (i) and (ii),we get

$\dfrac{\text{OB}}{\text{BQ}}\text{ = }\dfrac{\text{OC}}{\text{CR}} $

$ \therefore \text{BC  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CR} $

Converse of Basic proportionality theorem

7. By using Basic proportionality theorem, Show that a line passing through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX). 

Ans:

one side of a triangle parallel



Let us assume in the given figure in which \[\text{PQ}\] is a line segment passing through the mid-point \[\text{P}\] of line \[\text{AB}\], such that \[\text{PQ  }\!\!|\!\!\text{  }\!\!|\!\!\text{  BC}\].

From basic proportionality theorem, we know that

$\dfrac{\text{AQ}}{\text{QC}}\text{ = }\dfrac{\text{AP}}{\text{PB}} $

$ \dfrac{\text{AQ}}{\text{QC}}\text{ = 1} $

As \[\text{P}\] is the midpoint of \[\text{AB}\] ,\[\text{AP  =  PB}\]

\[\Rightarrow \text{AQ = QC}\]

Or

\[\text{Q}\] is the midpoint of \[\text{AC}\]

8. By using Converse of basic proportionality theorem, Show that the line joined by the midpoints of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX). 

Ans:

the midpoints of any two sides of a triangle is parallel to the third side



Let us assume that the given figure in which \[\text{PQ}\] is a line segment joined by the mid-points \[\text{P and Q}\] of lines \[\text{AB and AC}\] respectively. 

i.e., \[\text{AP  =  PB and AQ  =  QC}\]

Also it is clear that

$\dfrac{\text{AP}}{\text{PB}}\text{ = 1}$ and

$\dfrac{\text{AQ}}{\text{QC}}\text{ = 1} $

$ \therefore \dfrac{\text{AP}}{\text{PB}}\text{ = }\dfrac{\text{AQ}}{\text{QC}} $ 

Hence, using basic proportionality theorem, we get 

\[\text{PQ  }\!\!|\!\!\text{  }\!\!|\!\!\text{  BC}\]

9. If \[\text{ABCD}\] is a trapezium where \[\text{AB  }\!\!|\!\!\text{  }\!\!|\!\!\text{  DC}\] and its diagonals intersect each other at the point \[\text{O}\]. Prove that $\dfrac{\text{AO}}{\text{BO}}\text{ = }\dfrac{\text{CO}}{\text{DO}}$

Ans:


its diagonals intersect


Draw a line  \[\text{EF}\] through point \[\text{O}\] , such that 

In \[\text{ }\!\!\Delta\!\!\text{ ADC}\], \[\text{EO  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CD}\]

Using basic proportionality theorem, we get

$\dfrac{\text{AE}}{\text{ED}}\text{ = }\dfrac{\text{AO}}{\text{OC}}$____________________(i)

In \[\text{ }\!\!\Delta\!\!\text{ ABD}\]\[\text{, OE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AB}\] 

So, using basic proportionality theorem, we get

\[\frac{\text{AE}}{\text{ED}}\ =\ \frac{\text{BO}}{\text{DO}}\ \] ___________________(ii)

From equation (i) and (ii), we get 

$\frac{\text{AO}}{\text{CO}}\text{= }\frac{\text{BO}}{\text{DO}}$

$\therefore \ \frac{\text{AO}}{\text{BO}}\text{= }\frac{\text{CO}}{\text{DO}}$

10.  The diagonals of a quadrilateral \[\text{ABCD}\] intersect each other at the point \[\text{O}\] such that $\dfrac{\text{AO}}{\text{BO}}\text{ = }\dfrac{\text{CO}}{\text{DO}}$ Prove that \[\text{ABCD}\] is a trapezium. 

Ans: 

Let us assume the following figure for the given question.

Draw a line \[\text{OE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AB}\]

Let us assume the following figure



In \[\text{;ABD, OE  }\!\!|\!\!\text{  }\!\!|\!\!\text{  AB}\]

Using basic proportionality theorem, we get 

$\dfrac{\text{AE}}{\text{ED}}\text{ = }\dfrac{\text{BO}}{\text{OD}}\text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ (i)}$

However, it is given that 

$\frac{\text{AO}}{\text{BO}}\text{ = }\frac{\text{CO}}{\text{DO}} $

$ \therefore \text{ }\frac{\text{AO}}{\text{CO}}\text{ = }\frac{\text{BO}}{\text{DO}}\ \text{ }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ }\!\!~\!\!\text{  }\_\text{ (ii)} $

From equations (i) and (ii), we get 

$\dfrac{\text{AE}}{\text{ED}}\text{ = }\dfrac{\text{AO}}{\text{OC}} $

$ \Rightarrow \text{EO  }\!\!|\!\!\text{  }\!\!|\!\!\text{  DC} $

By the converse of basic proportionality theorem

$\Rightarrow \text{ AB }\left| \left| \text{ OE } \right| \right|\text{ DC}  $

$\Rightarrow \text{AB  }\!\!|\!\!\text{  }\!\!|\!\!\text{  CD} $

\[\therefore \text{ ABCD}\] is a trapezium.


Exercise 6.3

1. State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

(i)


the following figure are similar


(ii)


the pairs of similar triangles


(iii)


the pairs of similar triangles iii


(iv)


the pairs of similar triangles iv.png


(v)


the pairs of similar triangles v


(vi)


the pairs of similar triangles vi


Ans: 

I. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

$\angle \mathrm{A}=\angle \mathrm{P}$

$\angle \mathrm{B}=\angle \mathrm{Q}$

$\angle \mathrm{C}=\angle \mathrm{R}$

$\therefore$ By AAA criterion of similarity, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$


II. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{QRP}$

$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{RP}}=\frac{\mathrm{AC}}{\mathrm{QP}}=\frac{1}{2}$

$\therefore$ By SSS criterion of similarity, $\triangle \mathrm{ABC} \sim \triangle \mathrm{QRP}$


III. In $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$

$\frac{\mathrm{LM}}{\mathrm{DE}}=\frac{2.7}{4}, \frac{\mathrm{LP}}{\mathrm{DF}}=\frac{1}{2}$

The sides are not in the equal ratios, Hence the two triangles are not similar.


IV. In $\triangle \mathrm{MNL}$ and $\triangle \mathrm{QPR}$

$\angle \mathrm{M}=\angle \mathrm{Q}$

$\frac{\mathrm{MN}}{\mathrm{QP}}=\frac{\mathrm{ML}}{\mathrm{QR}}=\frac{1}{2}$

$\therefore$ By SAS criterion of similarity, $\triangle \mathrm{MNL} \sim \triangle \mathrm{QP} \mathrm{R}$


V. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFD}$

$\angle \mathrm{A}=\angle \mathrm{F}, $

$\frac{AB}{FD}=\frac{BC}{FD}=\frac{1}{2}$

$\therefore$ By SAS criterion of similarity, $\triangle \mathrm{ABC} \sim \triangle \mathrm{EFD}$


VI. In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$

Since, sum of angles of a triangle is $180^{\circ}$, Hence, $\angle \mathrm{F}=30^{\circ}$ and $\angle \mathrm{P}=70^{\circ}$

$\angle \mathrm{D} =\angle \mathrm{P}$

$\angle \mathrm{E} =\angle \mathrm{Q}$

$\angle \mathrm{F} =\angle \mathrm{R}$

$\therefore$ By AAA criterion of similarity, $\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$


2. In the following figure, $\Delta \mathrm{ODC} \sim \Delta \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$


In the following figure delta ODC


Ans: Given:

$\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}$

$\angle \mathrm{BOC}=125^{\circ}$

$\angle \mathrm{CDO}=70^{\circ}$

To find: $\angle D O C, \angle D C O$ and $\angle O A B$

Sol: Here, $B D$ is a line,

So, we can apply a linear pair on it.

$\angle B O C+\angle D O C=180^{\circ} (Linear Pair)$

$125^{\circ}+\angle D O C=180^{\circ}$

$\angle D O C=180^{\circ}-125^{\circ}$

$\angle D O C=180^{\circ}-125^{\circ}$

$\angle D O C=55^{\circ}$

Now in $\triangle \mathrm{DCO}$

$\angle C D O+\angle D C O+\angle D O C=180^{\circ}$

$70^{\circ}+\angle D C O+55^{\circ}=180^{\circ}$

$125^{\circ}+\angle D C O=180^{\circ}$

$\angle D C O=180^{\circ}-125^{\circ}$

$\angle D C O=55^{\circ}$

Now it is given that

$\triangle O D C \sim \triangle O B A$

Hence,

$\angle \mathrm{DCO}=\angle \mathrm{OAB}$

$55^{\circ}=\angle \mathrm{OAB}$

$\angle \mathrm{OAB}=55^{\circ}$

Now in $\triangle \mathrm{DCO}$

$\angle \mathrm{CDO}+\angle \mathrm{DCO}+\angle \mathrm{DOC}=180^{\circ} \quad$ (Sum of all angles of triangle is $180^0$ 

$70^{\circ}+\angle \mathrm{DCO}+55^{\circ}=180^{\circ}$ 

$125^{\circ}+\angle \mathrm{DCO}=180^{\circ}$ 

$\angle \mathrm{DCO}=180^{\circ}-125^{\circ}$ $\angle \mathrm{DCO}=55^{\circ}$

Now, it is given that

$\Delta \mathrm{ODC} \sim \triangle \mathrm{OBA}$

Hence.

$\angle D C O=\angle O A B$(Corresponding angles of a similar triangles are equal)

$55^{\circ}=\angle O A B$


3. Diagonals AC and BD of a trapezium ABCD with AB \|DC intersect each other at the point $\mathrm{O}$. Using a similarity criterion for two triangles, show that $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$

Ans: In $\Delta \mathrm{DOC}$ and $\triangle \mathrm{BOA}$

$\angle C D O=\angle A B O$ (Alternate interior angles as $A B \| C D)$

$\angle \mathrm{DCO}=\angle \mathrm{BAO}$ (Alternate interior angles as $\mathrm{AB} \| \mathrm{CD})$

$\angle \mathrm{DOC}=\angle \mathrm{BOA}$ (Vertically opposite angles $)$

$\therefore \Delta \mathrm{DOC} \sim \Delta \mathrm{BOA}$ (AAA similarity criterion)

$\therefore \frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OA}} \quad($ Corresponding sides are proportional)

$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$


4.  In the figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}} \text { and } \angle 1=\angle 2 \text {.Show that } \Delta \mathrm{PQS} \sim \Delta \mathrm{TQR}$


In the figure delta(PQR)


Ans: In $\delta \mathrm{PQR}, \angle \mathrm{PQR}=\angle \mathrm{PRQ}$

$\therefore \mathrm{PQ}=\mathrm{PR}(\mathrm{i})$

Given 

$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$

Using (i), we obtain


we obtain


$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}$

In $\triangle \mathrm{PQS}$ and $\triangle \mathrm{TQR}$,

$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}[\text { [Using (ii) }]$

$\angle \mathrm{Q}=\angle \mathrm{Q}$

$\therefore \Delta \mathrm{PQS} \sim \Delta \mathrm{TQR} \quad[\text { SAS similarity criterion }]$


5. $\mathrm{S}$ and $\mathrm{T}$ are point on sides $\mathrm{PR}$ and $\mathrm{QR}$ of $\triangle \mathrm{PQR}$ such that $\angle \mathrm{P}=\angle \mathrm{RTS}$. Show that $\triangle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$.

Ans: Given: $\Delta P Q R$

and the points $S$ and $T$ on sides PR and QR.

Such that $\angle P=\angle R T S$


the points S and T on sides PR and QR


To Prove: $\triangle \mathrm{RPQ} \sim \Delta$ RTS.

Proof:

In $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$.

$\angle P=\angle R T S$

(Given)

And $\angle \mathrm{PRQ}=\angle \mathrm{TRS}=\angle \mathrm{R}$

(Common)

So, $\triangle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$.

(AA similarity)

Hence proved


6. In the following figure, if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$.

Ans: 


We know that the corresponding portions of two triangles that are congruent to each other are equal.png


We know that the corresponding portions of two triangles that are congruent to each other are equal.

The two triangles are comparable if one of their angles is equal to one of the other triangle's angles, and the sides that include these angles are proportionate.

For two triangles, this is known as the SAS (Side - Angle - Side) similarity criteria.

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACD}$

$\mathrm{AD}=\mathrm{AE}(\triangle \mathrm{ABE} \cong \Delta \mathrm{ACD} \text { given }) \ldots \ldots \ldots \text { (1) }$

$\mathrm{AB}=\mathrm{AC}(\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD} \text { given })$

Now Consider $\triangle A D E$ and $\triangle A B C$

and $\angle$ DAE $=\angle B A C$ (Common angle)

Thus, $\triangle$ ADE $\sim A$ ABC (SAS criterion)


7. In the following figure, altitudes $\mathrm{AD}$ and $\mathrm{CE}$ of $\Delta \mathrm{ABC}$ intersect each other at the point, P. Show, that:


two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.png


I. $\triangle \mathrm{AEP} \sim \Delta \mathrm{CDP}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.


For two triangles


In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$

$[\because \mathrm{CE} \perp \mathrm{AB}$ and $\mathrm{AD} \perp \mathrm{BC} ;$ altitudes $]$

$\angle A P E=\angle C P D$ (Vertically opposite angles)

$\Rightarrow \triangle$ AEP $\sim \triangle$ CPD (AA criterion)


II. $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.


For two triangles, this is known as the AA similarity criteria.png


In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$

$\angle \mathrm{ADB}=\angle C E B=90^{\circ}$

$\angle \mathrm{ABD}=\angle C B E \text { (Common angle) }$

$\Rightarrow \triangle \mathrm{ABD} \sim \Delta C B E \text { (AA criterion) }$


III. $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.


the two triangles are said to be comparable.png


In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{ADB}$

$\angle \mathrm{AEP}=\angle \mathrm{ADB}=9 \mathrm{O}^{\circ}$

$\angle \mathrm{PAE}=\angle \mathrm{BAD} \text { (Common angle) }$

$\Rightarrow \triangle \mathrm{AEP} \sim \triangle \mathrm{ADB} \text { (AA criterion) }$


IV. $\Delta \mathrm{PDC} \sim \Delta \mathrm{BEC}$

Ans: When two angles from one triangle are equivalent to two angles from another triangle, the two triangles are said to be comparable.

For two triangles, this is known as the AA similarity criteria.


one triangle are equivalent to two angles from another triangle.png


In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$

$\angle \mathrm{PDC}=\angle \mathrm{BEC}=9 \mathrm{O}^{\circ}$

$\angle \mathrm{PCD}=\angle \mathrm{BCE} \text { (Common angle) }$

$\Rightarrow \triangle \text { PDC } \sim \triangle \mathrm{BEC} \text { (AA criterion)}$


8. $\mathrm{E}$ is a point on the side AD produced of a parallelogram $\mathrm{ABCD}$ and $\mathrm{BE}$ intersects $\mathrm{CD}$ at $\mathrm{F}$. Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$


the side AD produced of a parallelogram.png


Ans:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,

$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)

$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles as $\mathrm{AE} \| \mathrm{BC})$

$\therefore \Delta \mathrm{ABE} \sim \Delta \mathrm{CFB}$ (By AA similarity criterion)


9. In the following figure, $\mathrm{ABC}$ and AMP are two right triangles, right angled at B and M respectively, prove that:


two right triangles, right angled at B and M respectively.png


I. $\Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$

II. $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Ans: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$

$\angle \mathrm{ABC}=\angle \mathrm{AMP}\left(\operatorname{Each} 90^{\circ}\right)$ $\angle \mathrm{A}=\angle \mathrm{A}(\mathrm{Common})$

$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$ (By AA similarity criterion)

$\Rightarrow \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$ (Corresponding sides of similar triangles are proportional)


10. $\mathrm{CD}$ and $\mathrm{GH}$ are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that $\mathrm{D}$ and $\mathrm{H}$ lie on sides $\mathrm{AB}$ and $\mathrm{FE}$ of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim$ $\Delta \mathrm{FEG}$, Show that

(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$


lie on sides


Ans: 

$\text { It is given that } \triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}.$

$\therefore \angle \mathrm{A}=\angle \mathrm{F}, \angle \mathrm{B}=\angle \mathrm{E}, \text { and } \angle \mathrm{ACB}=\angle \mathrm{FGE}$

$\text { Since, } \angle \mathrm{ACB}=\angle \mathrm{FGE} $

$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH} \text { (Angle bisector) } $

$\text { And, } \angle \mathrm{DCB}=\angle \mathrm{HGE} \text { (Angle bisector) } $

$\text { In } \triangle \mathrm{ACD} \text { and } \Delta \mathrm{FGH} \text {, }$

$\angle \mathrm{A}=\angle \mathrm{F} \text { (Proved above) }$

$\angle \mathrm{ACD}=\angle \mathrm{FGH} \text { (Proved above) }$

$\therefore \Delta \mathrm{ACD} \sim \Delta \mathrm{FGH} \text { (By AA similarity criterion) }$

$\Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$


(ii) $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$

Ans: $\text { In } \triangle \mathrm{DCB} \text { and } \triangle \mathrm{HGE} \text {, } $

$\angle \mathrm{DCB}=\angle \mathrm{HGE} \text { (Proved above) } $

$\angle \mathrm{B}=\angle \mathrm{E} \text { (Proved above) } $

$\therefore \triangle \mathrm{DCB} \sim \triangle \mathrm{HGE} \text { (By AA similarity criterion) }$


(iii) $\triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$

Ans: In $\Delta \mathrm{DCA}$ and $\Delta \mathrm{HGF}$,

$\angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Proved above)

$\angle A=\angle F$ (Proved above)

$\therefore \Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}$ (By AA similarity criterion)


11. In the following figure, $\mathrm{E}$ is a point on side CB produced of an isosceles triangle $\mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim$ $\triangle \mathrm{ECF}$


an isosceles triangle ABCDEF.png


Ans: It is given that $\mathrm{ABC}$ is an isosceles triangle.

$\therefore \mathrm{AB}=\mathrm{AC}$

$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ECF}$

In $\Delta \mathrm{ABD}$ and $\triangle \mathrm{ECF}$

$\angle \mathrm{ADB}=\angle \mathrm{EFC}\left(\operatorname{Each} 90^{\circ}\right)$

$\angle \mathrm{BAD}=\angle \mathrm{CEF}$ (Proved above)

$\therefore \Delta \mathrm{ABD} \sim \triangle \mathrm{ECF}$ (By using AA similarity criterion)


12. Sides $\mathrm{AB}$ and $\mathrm{BC}$ and median AD of a triangle $\mathrm{ABC}$ are respectively proportional to sides PQ and QR and median PM of $\triangle \mathrm{PQR}$ (see the given figure). Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.


Median equally divides the opposite side


Ans: Median equally divides the opposite side.

$\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$

Given that,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}} \text { (Proved above) }$

$\therefore \Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}$ (By SSS similarity criterion)

$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{PQM}$ (Corresponding angles of similar triangles)

In $\triangle \mathrm{ABC}$ and $\Delta \mathrm{PQR}$,

$\angle \mathrm{ABD}=\angle \mathrm{PQM} \text { (Proved above) }$

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$

$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ (By SAS similarity criterion)


13. $\mathrm{D}$ is a point on the side $\mathrm{BC}$ of a triangle $\mathrm{ABC}$ such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA}^{2}= \mathrm{CB.CD}$


We know that corresponding sides of similar triangles are in proportion


Ans: $\text { In } \triangle \mathrm{ADC} \text { and } \triangle \mathrm{BAC} \text {, }$

$\angle \mathrm{ADC}=\angle \mathrm{BAC}$ (Given) $\angle \mathrm{ACD}=\angle \mathrm{BCA}$ (Common angle)

$\therefore \Delta \mathrm{ADC} \sim \triangle \mathrm{BAC}$ (By AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion. $\therefore \frac{\mathrm{CA}}{\mathrm{CB}}=\frac{\mathrm{CD}}{\mathrm{CA}}$ $\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \cdot \mathrm{CD}$


14. Sides $\mathrm{AB}$ and AC and median AD of a triangle $\mathrm{ABC}$ are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$


Let us extend AD and PM up to point


Ans: Given that,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Let us extend AD and PM up to point $E$ and $L$ respectively, such that $A D=$ DE and PM $=$ ML. 

Then, join $B$ to $E, C$ to $E, Q$ to $L$, and $R$ to $L .$


medians divide opposite sides


We know that medians divide opposite sides.

Therefore, $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{QM}=\mathrm{MR}$

Also, $\mathrm{AD}=\mathrm{DE}$ (By construction)

And, $\mathrm{PM}=\mathrm{ML}$ (By construction)

In quadrilateral ABEC, diagonals AE and BC bisect each other at point D. Therefore, quadrilateral ABEC is a parallelogram.

$\therefore \mathrm{AC}=\mathrm{BE}$ and $\mathrm{AB}=\mathrm{EC}$ (Opposite sides of a parallelogram are equal) Similarly, we can prove that quadrilateral PQLR is a parallelogram and PR = QL, $P Q=L R$

It was given that

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{\mathrm{AE}}{\mathrm{PL}}$

$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{PQL}$ (By SSS similarity criterion)

We know that corresponding angles of similar triangles are equal.

$\therefore \angle \mathrm{BAE}=\angle \mathrm{QPL} \ldots$ (1)

Similarly, it can be proved that $\triangle \mathrm{AEC} \sim \triangle \mathrm{PLR}$ and

$\angle \mathrm{CAE}=\angle \mathrm{RPL} \ldots$ (2)

Adding equation (1) and (2), we obtain

$\angle \mathrm{BAE}+\angle \mathrm{CAE}=\angle \mathrm{QPL}+\angle \mathrm{RPL}$

$\Rightarrow \angle \mathrm{CAB}=\angle \mathrm{RPQ} \ldots$ (3)

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$ (Given)

$\angle \mathrm{CAB}=\angle \mathrm{RPQ}[\mathrm{Using}$ equation $(3)]$

$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By SAS similarity criterion)


15. A vertical pole of a length $6 \mathrm{~m}$ casts a shadow $4 \mathrm{~m}$ long on the ground and at the same time a tower casts a shadow $28 \mathrm{~m}$ long. Find the height of the tower.


the same time a tower.png


Ans: Let $\mathrm{AB}$ and $\mathrm{CD}$ be a tower and a pole respectively.

Let the shadow of $\mathrm{BE}$ and DF be the shadow of $\mathrm{AB}$ and $\mathrm{CD}$ respectively.

At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.

Therefore, $\angle \mathrm{DCF}=\angle \mathrm{BAE}$

And, $\angle \mathrm{DFC}=\angle \mathrm{BEA}$

$\angle \mathrm{CDF}=\angle \mathrm{ABE}$ (Tower and pole are vertical to the ground)

$\therefore \Delta \mathrm{ABE} \sim \Delta \mathrm{CDF}$ (AAA similarity criterion)

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{DF}}$

$\Rightarrow \frac{\mathrm{AB}}{6 \mathrm{~cm}}=\frac{28}{4}$

$\Rightarrow \mathrm{AB}=42 \mathrm{~m}$

Therefore, the height of the tower will be 42 metres.


16. If $\mathrm{AD}$ and $\mathrm{PM}$ are medians of triangles $\mathrm{ABC}$ and $\mathrm{PQR}$, respectively where $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ Prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$


the corresponding sides of similar triangles


Ans: It is given that $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

We know that the corresponding sides of similar triangles are in proportion. 

$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{BC}}{\mathrm{QR}} \ldots(1)$

Also, $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R} \quad \ldots$ (2)

Since AD and PM are medians, they will divide their opposite sides. $\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$

From equations (1) and (3), we obtain

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$\angle B=\angle Q$ (Using equation (2))

$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$

(Using equation (4))

$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (By SAS similarity criterion)

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$


Overview of Deleted Syllabus for CBSE Class 10 Maths Chapter 6 Triangles

Chapter

Dropped Topics

Triangles

Exercise 6.4 

Exercise 6.5

Exercise 6.6

 


Class 10 Maths Chapter 6: Exercises Breakdown

Exercises

Number of Questions

Exercise 6.1

3 Questions & Solutions (3 Short Answers)

Exercise 6.2

10 Questions & Solutions (9 Short Answers, 1 Long Answer)

Exercise 6.3

16 Questions & Solutions (13 Short Answers, 3 Long Answers)



Conclusion

NCERT Solutions for Triangle Chapter Class 10 offers a clear and comprehensive understanding of triangle concepts. It makes studying simple and interesting by simplifying difficult subjects like the Pythagorean theorem, area computation, and trigonometric ratios.  It's crucial for students to focus on understanding fundamental concepts, such as triangle properties and different theorems. Practicing with the provided solutions and solving previous year question papers is essential for exam preparation. In previous year question papers, around 4-5 questions have been typically asked Ch 6 Class 10 Maths.


Other Study Material for CBSE Class 10 Maths Chapter 6



Chapter-Specific NCERT Solutions for Class 10 Maths

Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



NCERT Study Resources for Class 10 Maths

For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.

WhatsApp Banner
Best Seller - Grade 10
View More>
Previous
Next

FAQs on NCERT Solutions for Class 10 Maths Chapter 6 Triangles

1. What are the key criteria for triangle similarity used in NCERT Solutions for Class 10 Maths Chapter 6?

The key criteria for triangle similarity in Chapter 6 are:

  • AAA (Angle-Angle-Angle): If two triangles have all corresponding angles equal, the triangles are similar.
  • SAS (Side-Angle-Side): If two triangles have one equal angle and the sides including these angles are proportional, the triangles are similar.
  • SSS (Side-Side-Side): If the corresponding sides of two triangles are proportional, the triangles are similar.
These criteria help students determine similarity as per NCERT and CBSE guidelines.

2. How does the Basic Proportionality Theorem apply in Class 10 Maths Triangles solutions?

The Basic Proportionality Theorem (Thales' theorem) states: If a line is drawn parallel to one side of a triangle, it divides the other two sides proportionally.

  • For example, if DE || BC in triangle ABC, then AD/DB = AE/EC.
This theorem is widely used in solving Class 10 NCERT Maths Chapter 6 solutions as per CBSE 2025–26 pattern.

3. What are the most important theorems to focus on in NCERT Solutions for Class 10 Maths Chapter 6?

Students should focus on mastering the following theorems:

  • Basic Proportionality Theorem (Thales' Theorem)
  • Criteria for similarity of triangles (AAA, SAS, SSS)
  • Area of similar triangles theorem
  • Pythagoras Theorem (and its converse)
  • Mid-point Theorem
  • Angle Bisector Theorem
Understanding and applying these is crucial for solving CBSE exam-level questions effectively.

4. How can I correctly apply similarity criteria to prove two triangles are similar as per CBSE exam requirements?

Follow these steps:

  • Identify the given relations or markings in the figure (equal angles, proportional sides).
  • Check for AAA, SAS, or SSS similarity as defined in the chapter.
  • Write similarity statements clearly, e.g., ‘By AAA similarity, △ABC ∼ △DEF’.
  • Justify each step logically as per NCERT/CBSE marking scheme.
This structured approach secures marks and matches CBSE board expectations.

5. What is a common mistake students make when using similarity theorems in Class 10 Maths Chapter 6?

The most common mistake is confusing congruence with similarity or assuming proportional sides without confirming angle conditions.

  • Always check for appropriate criteria: AAA, SAS, or SSS for similarity.
  • Do not use CPCT (corresponding parts of congruent triangles) unless triangles are congruent.
Careful statement and justification are required to avoid losing marks on such errors.

6. How does the Pythagoras theorem relate to triangle similarity in NCERT Solutions for Class 10 Maths?

The Pythagoras theorem is proven using triangle similarity concepts:

  • Construct altitudes or draw perpendiculars to form right-angled triangles.
  • Show the small triangle is similar to the original triangle using AA similarity.
  • This proportionality leads to the proof of a² + b² = c² for right-angled triangles, as explained in Chapter 6.
This link between similarity and Pythagoras is frequently tested in CBSE board exams.

7. In what ways can area of similar triangles be used to solve exam questions, as per the NCERT Class 10 Maths Solutions?

The area of similar triangles are in the ratio of the square of corresponding sides:

  • If two triangles are similar with a scale factor k, then Area₁/Area₂ = (Side₁/Side₂)2.
This property is often used to solve problems involving unknown lengths or comparing shapes in board exams.

8. What strategies help in scoring full marks in NCERT Solutions for Class 10 Maths Chapter 6 Triangles?

To score maximum marks:

  • Master all similarity criteria and theorems with clear examples.
  • Practice all exercise and exemplar questions as per CBSE pattern.
  • Show each step with reasons (e.g., "By AA similarity").
  • Draw proper figures and label them for reasoning-based questions.
Written justification and methodical solving are key to success in CBSE board exams.

9. What if two polygons have the same number of sides but different corresponding angles—are they similar as per Chapter 6?

No, two polygons with the same number of sides are only similar if their corresponding angles are equal and the corresponding sides are proportional.

  • If only the number of sides matches but not angles or side ratios, they are not similar.
This misconception is common; CBSE expects clear reasoning.

10. How is the Angle Bisector Theorem applied in Class 10 Maths NCERT Solutions, and what does it state?

The Angle Bisector Theorem states: In a triangle, the angle bisector divides the opposite side into segments proportional to the adjacent sides.

  • If AD is the angle bisector of ∠A in triangle ABC, then BD/DC = AB/AC.
This is used in proofs and construction questions in NCERT solutions and is a frequent CBSE exam HOTS topic.

11. Why is it necessary to know both theorems and their converses in Class 10 Chapter 6 Mathematics?

Both theorems and their converses are important:

  • Theorem: Allows deduction of proportional sides from parallel lines.
  • Converse: Allows deduction of parallelism from proportional sides.
CBSE exams often require applying the correct direction (forward or converse) in proofs and constructions. Awareness of both is vital for scoring full marks.

12. What is the practical importance of studying triangle similarity in NCERT Class 10 Maths for real-world applications?

Triangle similarity finds practical uses in:

  • Measuring inaccessible distances (e.g., height of a building using shadows).
  • Indirect measurements in engineering and construction.
  • Models and map scaling.
These applications reinforce the relevance of concepts beyond board exams.

13. In NCERT Solutions for Class 10 Maths Chapter 6, how should students approach assertion-reason and HOTS-style questions?

For assertion-reason and higher-order thinking (HOTS) questions:

  • Carefully analyze the assertion and reason given.
  • Assess if both parts are correct, and if the reason correctly explains the assertion as per textbook theorems.
  • Support your answer with a logical explanation, using proper similarity or proportionality rules.
Practicing such questions improves conceptual clarity for CBSE exams.

14. Are all exercises from Class 10 Maths Chapter 6 Triangles equally important for board exams?

All exercises in Chapter 6 address core concepts, but:

  • Focus on exercises involving theorem application, HOTS, and previous years’ exam patterns (e.g., Exercises 6.1 to 6.3 for 2025–26 syllabus).
  • Practice proofs, proportion application, and reasoning-based questions for best exam readiness.