Get Free PDF Solutions for Quadratic Equations Class 10 Maths Chapter 4 Exercise 4.2
The NCERT Solutions for Class 10 Maths Chapter 4 Exercise 4.2 on Quadratic Equations offers detailed answers to the exercises given. These solutions are designed to help students prepare for their CBSE Class 10 board exams. It's important for students to go through these solutions carefully as they cover various types of questions related to Quadratic Equations. By practicing with these solutions, students can enhance their understanding and be better equipped to tackle similar questions in their Class 10 board exams.


Glance on NCERT Solutions Maths Chapter 4 Exercise 4.2 Class 10 | Vedantu
In this article, we will understands the concept of factorization and breaking down the equation into a product of simpler expressions.
Identifying the appropriate numbers to be used for splitting the middle term.
Solving for the roots (x) by equating the factored expressions to zero.
Applying factoring techniques like splitting the middle term to find the roots (solutions) of the equation.
CBSE Class 10 Maths Chapter 4 Quadratic Equations – Solutions 2025–26
Access PDF for Maths NCERT Chapter 4 Quadratic Equations Exercise 4.2 Class 10
Refer to page 1 - 7 for Exercise 4.2 in the PDF
1. Find the roots of the following quadratic equations by factorisation:
i. ${{\text{x}}^{\text{2}}}\text{-3x-10=0}$
Ans: ${{\text{x}}^{\text{2}}}\text{-3x-10=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-5x+2x-10}$
$\Rightarrow \text{x}\left( \text{x-5} \right)\text{+2}\left( \text{x-5} \right)$
$\Rightarrow \left( \text{x-5} \right)\left( \text{x+2} \right)$
Therefore, roots of this equation are –
$\text{x-5=0}$ or $\text{x+2=0}$
i.e $\text{x=5}$ or $\text{x=-2}$
ii. $\text{2}{{\text{x}}^{\text{2}}}\text{+x-6=0}$
Ans: $\text{2}{{\text{x}}^{\text{2}}}\text{+x-6=0}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+4x-3x-6}$
$\Rightarrow 2\text{x}\left( \text{x+2} \right)-3\left( \text{x+2} \right)$
$\Rightarrow \left( \text{x+2} \right)\left( \text{2x-3} \right)$
Therefore, roots of this equation are –
$\text{x+2=0}$ or $\text{2x-3=0}$
i.e $\text{x=-2}$ or $\text{x=}\dfrac{3}{2}$
iii. $\sqrt{\text{2}}{{\text{x}}^{\text{2}}}\text{+7x+5}\sqrt{\text{2}}\text{=0}$
Ans: $\sqrt{\text{2}}{{\text{x}}^{\text{2}}}\text{+7x+5}\sqrt{\text{2}}\text{=0}$
$\Rightarrow \sqrt{\text{2}}{{\text{x}}^{\text{2}}}\text{+5x+2x+5}\sqrt{\text{2}}$
$\Rightarrow \text{x}\left( \sqrt{\text{2}}\text{x+5} \right)+\sqrt{\text{2}}\left( \sqrt{\text{2}}\text{x+5} \right)$
$\Rightarrow \left( \sqrt{\text{2}}\text{x+5} \right)\left( \text{x+}\sqrt{\text{2}} \right)$
Therefore, roots of this equation are –
$\sqrt{\text{2}}\text{x+5=0}$ or $\text{x+}\sqrt{\text{2}}\text{=0}$
i.e $\text{x=}\dfrac{-5}{\sqrt{\text{2}}}$ or $\text{x=-}\sqrt{\text{2}}$
iv. $\text{2}{{\text{x}}^{\text{2}}}\text{-x+}\dfrac{\text{1}}{\text{8}}\text{=0}$
Ans: $\text{2}{{\text{x}}^{\text{2}}}\text{-x+}\dfrac{\text{1}}{\text{8}}\text{=0}$
\[\Rightarrow \dfrac{\text{1}}{\text{8}}\left( 16{{\text{x}}^{\text{2}}}-8x+1 \right)\]
\[\Rightarrow \dfrac{\text{1}}{\text{8}}\left( 4x\left( 4x-1 \right)-1\left( 4x-1 \right) \right)\]
$\Rightarrow {{\left( \text{4x-1} \right)}^{2}}$
Therefore, roots of this equation are –
$\text{4x-1=0}$ or $\text{4x-1=0}$
i.e $\text{x=}\dfrac{1}{4}$ or $\text{x=}\dfrac{1}{4}$
v. $\text{100}{{\text{x}}^{\text{2}}}\text{-20x+1=0}$
Ans: $\text{100}{{\text{x}}^{\text{2}}}\text{-20x+1=0}$
$\Rightarrow 100{{\text{x}}^{\text{2}}}\text{-10x-10x+1}$
$\Rightarrow 10\text{x}\left( \text{10x-1} \right)-1\left( \text{10x-1} \right)$
\[\Rightarrow \left( \text{10x-1} \right)\left( \text{10x-1} \right)\]
Therefore, roots of this equation are –
\[\left( \text{10x-1} \right)=0\]or \[\left( \text{10x-1} \right)=0\]
i.e $\text{x=}\dfrac{1}{10}$ or $\text{x=}\dfrac{1}{10}$
2. i. John and Jivanti together have $\text{45}$ marbles. Both of them lost $\text{5}$ marbles each, and the product of the number of marbles they now have is $\text{124}$. Find out how many marbles they had to start with.
Ans: Let the number of john’s marbles be $\text{x}$.
Thus, the number of Jivanti’s marbles is $\text{45-x}$.
According to question i.e,
After losing $\text{5}$ marbles.
Number of john’s marbles be $\text{x-5}$
And the number of Jivanti’s marble is $\text{40-x}$.
Therefore, $\left( \text{x-5} \right)\left( \text{40-x} \right)\text{=124}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-45x+324=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-36x-9x+324=0}$
$\Rightarrow \text{x}\left( \text{x-36} \right)\text{-9}\left( \text{x-36} \right)\text{=0}$
$\Rightarrow \left( \text{x-36} \right)\left( \text{x-9} \right)\text{=0}$
So now,
Case 1: If $\text{x-36=0}$ i.e $\text{x=36}$
So, the number of john’s marbles is $\text{36}$.
Thus, the number of Jivanti’s marbles is $\text{9}$.
Case 2: If $\text{x-9=0}$ i.e $\text{x=9}$
So, the number of john’s marbles will be $9$.
Thus, the number of Jivanti’s marbles is $36$.
ii. A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be $\text{55}$ minus the number of toys produced in a day. On a particular day, the total cost of production was Rs $\text{750}$. Find out the number of toys produced on that day.
Ans: Let the number of toys produced be $\text{x}$.
Therefore, Cost of production of each toy is $\text{Rs}\left( \text{55-x} \right)$.
Thus, $\left( \text{55-x} \right)\text{x=750}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-55x+750=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-25x-30x+750=0}$
$\Rightarrow \text{x}\left( \text{x-25} \right)-30\left( \text{x-25} \right)\text{=0}$
$\Rightarrow \left( \text{x-25} \right)\left( \text{x-30} \right)\text{=0}$
Case 1: If $\text{x-25=0}$ i.e $\text{x=25}$
So, the number of toys will be $25$.
Case 2: If $\text{x-30=0}$ i.e $\text{x=30}$
So, the number of toys will be $30$.
3. Find two numbers whose sum is $\text{27}$ and product is $\text{182}$.
Ans: Let the first number be $\text{x}$ ,
Thus, the second number is $\text{27-x}$.
Therefore,
$\text{x}\left( \text{27-x} \right)\text{=182}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-27x+182=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-13x-14x+182=0}$
$\Rightarrow \text{x}\left( \text{x-13} \right)-14\left( \text{x-13} \right)\text{=0}$
$\Rightarrow \left( \text{x-13} \right)\left( \text{x-14} \right)\text{=0}$
Case 1: If $\text{x-13=0}$ i.e $\text{x=13}$
So, the first number be $13$ ,
Thus, the second number is $\text{14}$.
Case 2: If $\text{x-14=0}$ i.e $\text{x=14}$
So, the first number is $\text{14}$.
Thus, the second number is $13$.
4. Find two consecutive positive integers, sum of whose squares is $\text{365}$.
Ans: Let the consecutive positive integers be $\text{x}$ and $\text{x+1}$.
Thus, ${{\text{x}}^{\text{2}}}\text{+}{{\left( \text{x+1} \right)}^{\text{2}}}\text{=365}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{2}}}+1+2\text{x=365}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+2x-364=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+x-182=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+14x-13x-182=0}$
$\Rightarrow \text{x}\left( \text{x+14} \right)-13\left( \text{x+14} \right)\text{=0}$
$\Rightarrow \left( \text{x+14} \right)\left( \text{x-13} \right)\text{=0}$
Case 1: If $\text{x+14=0}$ i.e $\text{x=-14}$.
This case is rejected because the number is positive.
Case 2: If $\text{x-13=0}$ i.e $\text{x=13}$
So, the first number is $\text{13}$.
Thus, the second number is $14$.
Hence, the two consecutive positive integers are $\text{13}$ and $14$.
5. The altitude of a right triangle is $\text{7 cm}$ less than its base. If the hypotenuse is $\text{13 cm}$, find the other two sides.
Ans: Let the base of the right-angled triangle be $\text{x cm}$.
Its altitude is $\left( \text{x-7} \right)\text{cm}$.
Thus, by pythagoras theorem-
$\text{bas}{{\text{e}}^{\text{2}}}\text{+altitud}{{\text{e}}^{\text{2}}}\text{=hypotenus}{{\text{e}}^{\text{2}}}$
\[\therefore {{\text{x}}^{\text{2}}}\text{+}{{\left( \text{x-7} \right)}^{\text{2}}}\text{=1}{{\text{3}}^{\text{2}}}\]
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{2}}}+49-14\text{x=169}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{-14x-120=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{-7x-60=0}$
$\Rightarrow {{\text{x}}^{\text{2}}}\text{+12x+5x-60=0}$
$\Rightarrow \text{x}\left( \text{x-12} \right)+5\left( \text{x-12} \right)\text{=0}$
$\Rightarrow \left( \text{x-12} \right)\left( \text{x+5} \right)\text{=0}$
Case 1: If $\text{x-12=0}$ i.e $\text{x=12}$.
So, the base of the right-angled triangle be $\text{12 cm}$ and Its altitude be $\text{5cm}$
Case 2: If $\text{x+5=0}$ i.e $\text{x=-5}$
This case is rejected because the side is always positive.
Hence, the base of the right-angled triangle is $\text{12 cm}$ and its altitude is $\text{5cm}$.
6. A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was $\text{3}$ more than twice the number of articles produced on that day. If the total cost of production on that day was Rs $\text{90}$, find the number of articles produced and the cost of each article.
Ans: Let the number of articles produced be $\text{x}$.
Therefore, the cost of production of each article is $\text{Rs}\left( \text{2x+3} \right)$.
Thus, $\text{x}\left( \text{2x+3} \right)\text{=90}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+3x-90=0}$
$\Rightarrow 2{{\text{x}}^{\text{2}}}\text{+15x-12x-90=0}$
$\Rightarrow \text{x}\left( \text{2x+15} \right)-6\left( \text{2x+15} \right)\text{=0}$
$\Rightarrow \left( \text{2x+15} \right)\left( \text{x-6} \right)\text{=0}$
Case 1: If $\text{2x-15=0}$ i.e $\text{x=}\dfrac{-15}{2}$.
This case is rejected because the number of articles is always positive.
Case 2: If $\text{x-6=0}$ i.e $\text{x=6}$
Hence, the number of articles produced will be $6$.
Therefore, the cost of production of each article is $\text{Rs15}$.
Conclusion
Class 10 Maths Ex 4.2 of Chapter 4 - Quadratic Equations, is crucial for a solid foundation in math. Understanding the concept of factoring quadratic expressions is a key takeaway. Vedantu's NCERT solutions can guide you in conquering quadratic equations using the method of factorization. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward. Consistent practice and understanding will lead to proficiency in Quadratic Equations related problems
NCERT Solutions for Class 10 Maths Chapter 4 Exercises
Chapter 4 Quadratic Equations all Exercises in PDF Format | |
2 Questions and Solutions | |
5 Questions and Solutions |
CBSE Class 10 Maths Chapter 4 Other Study Materials
S. No | Important Links for Chapter 4 Quadratic Equations |
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
Chapter-Specific NCERT Solutions for Class 10 Maths
Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S.No. | NCERT Solutions Class 10 Chapter-wise Maths PDF |
1 | |
2 | |
3 | Chapter 3 - Pair Of Linear Equations In Two Variables Solutions |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 |
NCERT Study Resources for Class 10 Maths
For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.
S.No. | NCERT Study Resources for Class 10 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |











