
The first seismograph was invented in
A. Germany by Albert Einstein.
B. China by zhang Heng.
C. Germany by Emmy Noether.
D. none of the above.
Answer
232.8k+ views
Hint It is known that seismograph is an instrument for measuring earthquake (seismic) waves. They are held in a very solid position, either on the bedrock or on a concrete base. The seismometer itself consists of a frame and a mass that can move relative to it. The terms seismograph and seismometer are often used interchangeably; however, whereas both devices may detect and measure seismic waves, only a seismograph possesses the capacity to record the phenomena. A record produced by a seismograph on a display screen or paper printout is called a seismogram.
Complete step by step answer
We can write that a seismometer is an instrument that responds to ground motions, such as caused by earthquakes, volcanic eruptions, and explosions. Seismometers are usually combined with a timing device and a recording device to form a seismograph.
A Chinese mathematician, named Zhang Heng, inverted and constructed the first seismograph in A.D. 132. He called it an "earthquake weathercock." Each of the eight dragons had a bronze ball in its mouth.
However, the main problem that must be solved in creating a seismograph is that when the ground shakes, so does the instrument. Therefore, most seismographs involve a large mass of some sort. A seismogram is a graph output by a seismograph. It is a record of the ground motion at a measuring station as a function of time. Seismograms typically record motions in three cartesian axes (x, y, and z), with the z axis perpendicular to the Earth's surface and the x- and y- axes parallel to the surface.
So, the correct answer is option B.
Note: We know that scientists can use them to determine the distance to an earthquake. Using at least three seismograms, they can locate the earthquake's epicentre. Scientists measure earthquake intensity in several ways. So far no one has found a way to predict earthquakes. During an earthquake, the seismometer remains still while the case around it moves with the ground shaking. Traditionally, the suspended mass was a pendulum, but most modern seismometers work electromagnetically. Seismograms are used to determine the location and magnitude of earthquakes. An earthquake's magnitude may be considered to vary as a function of the amount of energy released at the rupture point.
Complete step by step answer
We can write that a seismometer is an instrument that responds to ground motions, such as caused by earthquakes, volcanic eruptions, and explosions. Seismometers are usually combined with a timing device and a recording device to form a seismograph.
A Chinese mathematician, named Zhang Heng, inverted and constructed the first seismograph in A.D. 132. He called it an "earthquake weathercock." Each of the eight dragons had a bronze ball in its mouth.
However, the main problem that must be solved in creating a seismograph is that when the ground shakes, so does the instrument. Therefore, most seismographs involve a large mass of some sort. A seismogram is a graph output by a seismograph. It is a record of the ground motion at a measuring station as a function of time. Seismograms typically record motions in three cartesian axes (x, y, and z), with the z axis perpendicular to the Earth's surface and the x- and y- axes parallel to the surface.
So, the correct answer is option B.
Note: We know that scientists can use them to determine the distance to an earthquake. Using at least three seismograms, they can locate the earthquake's epicentre. Scientists measure earthquake intensity in several ways. So far no one has found a way to predict earthquakes. During an earthquake, the seismometer remains still while the case around it moves with the ground shaking. Traditionally, the suspended mass was a pendulum, but most modern seismometers work electromagnetically. Seismograms are used to determine the location and magnitude of earthquakes. An earthquake's magnitude may be considered to vary as a function of the amount of energy released at the rupture point.
Recently Updated Pages
Derivatives of Ammonia - Important Concepts and Tips for JEE

Degree of Dissociation in Chemistry: Concept, Formula & Examples

Cyclotron: Principles, Working & Uses Explained

Current Loop as a Magnetic Dipole: Concepts & Examples

Current and Potential Difference Explained Simply

Covalent Character in Ionic Compounds Important Concepts for JEE

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

