
A signal of 5kHz frequency is amplitude modulated on a carrier wave of frequency 2 MHz. The frequencies of the resultant signal is/are
A) 2 MHz only
B) 2005 kHz and 1995 kHz
C) 2005 kHz, 2000 kHz, and 1995 kHz
D) 2000 kHz and 1995 kHz
Answer
154.5k+ views
Hint: In amplitude modulation, the amplitude (signal strength) of the carrier wave is in proportion to that of the input signal, such as an audio or video signal. Amplitude modulation is done to transmit low-frequency signals over large distances without power losses.
Complete step by step answer:
Modulation is a process of combining a signal with a sinusoid to produce a new signal with different properties. This new signal, conceivably, will have certain benefits over an un-modulated signal due to its different properties. Mixing of low-frequency signals with high-frequency carrier signals is called modulation.
Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio carrier wave.
The bandwidth of the resultant signal is twice the bandwidth of the modulating signal since the upper and lower sidebands around the carrier or the input signal frequency each have a bandwidth as wide as the modulating frequency. So, in our case, the modulating frequency is${f_C} = 2{\text{ }}MHz = 2000\,kHz$.
Hence the frequency of the resultant signal will have frequencies of
\[{f_R} = {f_C} + {f_m} = 2000\,kHz + 5\,kHz = 2005\,kHz\]
\[{f_R} = {f_C} - {f_m} = 2000\,kHz - 5\,kHz = 1995\,kHz\]
So, the frequency content of the resultant wave will have frequencies 1995kHz, 2000kHz and 2005kHz
Note: The way amplitude modulation such that bandwidths of frequencies are emitted from the resultant signal will have a bandwidth of frequencies depending on the way the modulation is carried out. In our case, the modulated frequencies can have values between the resultant frequencies as well as the modulation frequency itself. Modulation is required since low-frequency signals which contain the data cannot be emitted over the atmosphere since they will be scattered immensely while a higher frequency wave will not be scattered as much. There are different kinds of modulation possible to solve this issue: amplitude modulation, frequency modulation, and phase modulation.
Complete step by step answer:
Modulation is a process of combining a signal with a sinusoid to produce a new signal with different properties. This new signal, conceivably, will have certain benefits over an un-modulated signal due to its different properties. Mixing of low-frequency signals with high-frequency carrier signals is called modulation.
Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio carrier wave.
The bandwidth of the resultant signal is twice the bandwidth of the modulating signal since the upper and lower sidebands around the carrier or the input signal frequency each have a bandwidth as wide as the modulating frequency. So, in our case, the modulating frequency is${f_C} = 2{\text{ }}MHz = 2000\,kHz$.
Hence the frequency of the resultant signal will have frequencies of
\[{f_R} = {f_C} + {f_m} = 2000\,kHz + 5\,kHz = 2005\,kHz\]
\[{f_R} = {f_C} - {f_m} = 2000\,kHz - 5\,kHz = 1995\,kHz\]
So, the frequency content of the resultant wave will have frequencies 1995kHz, 2000kHz and 2005kHz
Note: The way amplitude modulation such that bandwidths of frequencies are emitted from the resultant signal will have a bandwidth of frequencies depending on the way the modulation is carried out. In our case, the modulated frequencies can have values between the resultant frequencies as well as the modulation frequency itself. Modulation is required since low-frequency signals which contain the data cannot be emitted over the atmosphere since they will be scattered immensely while a higher frequency wave will not be scattered as much. There are different kinds of modulation possible to solve this issue: amplitude modulation, frequency modulation, and phase modulation.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Wheatstone Bridge for JEE Main Physics 2025

The force of interaction of two dipoles if the two class 12 physics JEE_Main

Three charges sqrt 2 mu C2sqrt 2 mu Cand sqrt 2 mu class 12 physics JEE_Main

The potential of A is 10V then the potential of B is class 12 physics JEE_Main

Other Pages
JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An uncharged sphere of metal is placed inside a charged class 12 physics JEE_Main

Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

A signal of 5kHz frequency is amplitude modulated on class 12 physics JEE_Main
