
Three mediums of refractive indices ${\mu _1},{\mu _0}{\text{ and }}{\mu _2}$ are shown in the fig. $\left( {{\mu _1} > {\mu _0},{\text{ and }}{\mu _2} > {\mu _0}} \right)$. The lamps $A$ and $B$ are placed at the bottom and top of the first and third mediums of the same thickness. If the bottom layer of the middle medium is illuminated for a circle of half of the radius for which the upper layer of this medium is illuminated, the relationship between ${\mu _1}{\text{ and }}{\mu _2}$ is $\left( {given{\text{ }}{\mu _0} = 1} \right)$:

$\left( a \right){\text{ 2}}{\mu _2} = \sqrt {\mu _1^2 + 3} $
$\left( b \right){\text{ }}{\mu _2} = \sqrt {\mu _1^2 + 4} $
$\left( c \right){\text{ }}{\mu _2} = \sqrt {\mu _1^2 + 2} $
$\left( d \right){\text{ }}{\mu _2} = \sqrt {\mu _1^2 + 1} $
Answer
154.8k+ views
Hint First of all by using the formula which is $\operatorname{Sin} c = \dfrac{1}{\mu }$and from this we can now calculate the $\tan {c_1}$ and similarly we will calculate $\tan {c_2}$ and from this we will calculate the radius and them by morphing the distance $r$, we will get the relation between ${\mu _1}{\text{ and }}{\mu _2}$.
Formula used:
By using Snell’s law
$\operatorname{Sin} c = \dfrac{1}{\mu }$, and
$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$
Here, $\mu $ will be the refractive index.
Complete step by step solution
First of all, we will make the figure from the question and elaborate the figure. Here, by using the Pythagoras theorem we will mark the positions and find the angle between them. The height will be the same in both the mediums.

On elaborating the figure, by using the formula $\operatorname{Sin} c = \dfrac{1}{\mu }$and$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$.
Therefore by using the above, we get
$\tan {c_1} = \dfrac{r}{h}$
And here from the $r$will be given as
$ \Rightarrow r = h\tan {c_1}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow r = h \times \dfrac{1}{{\sqrt {\mu _1^2 - 1} }}$, we will let it equation $1$
Now also $\tan {c_2} = \dfrac{{2r}}{h}$
And here from the $r$will be given as
$ \Rightarrow 2r = h\tan {c_2}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow 2r = h \times \dfrac{1}{{\sqrt {\mu _2^2 - 1} }}$, we will let it equation $2$
Now on dividing the equation $1$and equation$2$, we get
$ \Rightarrow \dfrac{1}{2} = \dfrac{{\sqrt {\mu _2^2 - 1} }}{{\sqrt {\mu _1^2 - 1} }}$
Now on squaring both the sides, we get
$ \Rightarrow \dfrac{1}{4} = \dfrac{{\mu _2^2 - 1}}{{\mu _1^2 - 1}}$
So on doing the cross-multiplication, we get
$ \Rightarrow \mu _1^2 - 1 = 4\mu _2^2 - 4$
And solving the above equation by removing the square, we get
$ \Rightarrow 2{\mu _2} = \sqrt {\mu _1^2 + 3} $
Therefore, the relation between ${\mu _1}{\text{ and }}{\mu _2}$is$2{\mu _2} = \sqrt {\mu _1^2 + 3} $.
Hence, the option $\left( a \right)$is correct.
Note As we have seen that there is a very little bit of concept used for solving this question. The question more emphasizes the calculation and by using the properties of the refraction, we can answer it easily. We just have to use some Pythagoras rule and some trigonometric formulas to solve this.
Formula used:
By using Snell’s law
$\operatorname{Sin} c = \dfrac{1}{\mu }$, and
$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$
Here, $\mu $ will be the refractive index.
Complete step by step solution
First of all, we will make the figure from the question and elaborate the figure. Here, by using the Pythagoras theorem we will mark the positions and find the angle between them. The height will be the same in both the mediums.

On elaborating the figure, by using the formula $\operatorname{Sin} c = \dfrac{1}{\mu }$and$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$.
Therefore by using the above, we get
$\tan {c_1} = \dfrac{r}{h}$
And here from the $r$will be given as
$ \Rightarrow r = h\tan {c_1}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow r = h \times \dfrac{1}{{\sqrt {\mu _1^2 - 1} }}$, we will let it equation $1$
Now also $\tan {c_2} = \dfrac{{2r}}{h}$
And here from the $r$will be given as
$ \Rightarrow 2r = h\tan {c_2}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow 2r = h \times \dfrac{1}{{\sqrt {\mu _2^2 - 1} }}$, we will let it equation $2$
Now on dividing the equation $1$and equation$2$, we get
$ \Rightarrow \dfrac{1}{2} = \dfrac{{\sqrt {\mu _2^2 - 1} }}{{\sqrt {\mu _1^2 - 1} }}$
Now on squaring both the sides, we get
$ \Rightarrow \dfrac{1}{4} = \dfrac{{\mu _2^2 - 1}}{{\mu _1^2 - 1}}$
So on doing the cross-multiplication, we get
$ \Rightarrow \mu _1^2 - 1 = 4\mu _2^2 - 4$
And solving the above equation by removing the square, we get
$ \Rightarrow 2{\mu _2} = \sqrt {\mu _1^2 + 3} $
Therefore, the relation between ${\mu _1}{\text{ and }}{\mu _2}$is$2{\mu _2} = \sqrt {\mu _1^2 + 3} $.
Hence, the option $\left( a \right)$is correct.
Note As we have seen that there is a very little bit of concept used for solving this question. The question more emphasizes the calculation and by using the properties of the refraction, we can answer it easily. We just have to use some Pythagoras rule and some trigonometric formulas to solve this.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Electrical Field of Charged Spherical Shell - JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
