
Formula for number of images formed by two plane mirrors incident at an angle $\theta $ is $n$ = $\dfrac{{360^\circ }}{\theta }$. If n is even, the number of images is n-1, if n is an odd number of images.
Column I Column II a) $\theta $ $ = $ $60^\circ $ 1) n $ = $ 9 b) $\theta $ $ = $ $60^\circ $ 2) n $ = $ 3 c) $\theta $ $ = $ $60^\circ $ 3) n $ = $ 5 d) $\theta $ $ = $ $60^\circ $ 4) n $ = $ 7 5) n $ = $ 1
| Column I | Column II |
| a) $\theta $ $ = $ $60^\circ $ | 1) n $ = $ 9 |
| b) $\theta $ $ = $ $60^\circ $ | 2) n $ = $ 3 |
| c) $\theta $ $ = $ $60^\circ $ | 3) n $ = $ 5 |
| d) $\theta $ $ = $ $60^\circ $ | 4) n $ = $ 7 |
| 5) n $ = $ 1 |
Answer
505.9k+ views
Hint: Image is defined as the collection of focus points of light rays coming from an object. If the image of the object is viewed in two plane mirrors that are inclined to each other, more than one image is formed. The number of images formed by two plane mirrors depends on the angle between the mirror.
Complete step by step solution:
Given the angle is $\theta $.
If the value of $\dfrac{{360^\circ }}{\theta }$is even, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
If the value $\dfrac{{360^\circ }}{\theta }$is odd, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta }$
a) When $\theta $ $ = $ $60^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{60^\circ }}$$ = $ 6, where 6 is an even number.
we will use the formula for No. of images $ = $ $\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 6 $ - $1 $ = $ 5
Thus, the images formed will be 5.
b) When $\theta $ $ = $ $40^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{40^\circ }}$$ = $ 9, where 9 is an odd number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta }$$ = $ 9
Thus, the images formed will be 9.
c) When $\theta $ $ = $ $90^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{90^\circ }}$$ = $ 4, where 4 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 4 $ - $1 $ = $ 3
Thus, the images formed will be 3.
d) When $\theta $ $ = $ $180^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{180^\circ }}$$ = $ 2, where 2 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 2 $ - $1 $ = $ 1
Thus, the images formed will be 1.
Hence the correct option for the problem is a $ = $3, b $ = $1, c $ = $2, d $ = $5.
Note: 1) If $\dfrac{{360^\circ }}{\theta }$ is a fraction, then the number of images formed will be equal to its integral part.
2) The smaller the angle, the greater the number of images.
Complete step by step solution:
Given the angle is $\theta $.
If the value of $\dfrac{{360^\circ }}{\theta }$is even, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
If the value $\dfrac{{360^\circ }}{\theta }$is odd, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta }$
a) When $\theta $ $ = $ $60^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{60^\circ }}$$ = $ 6, where 6 is an even number.
we will use the formula for No. of images $ = $ $\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 6 $ - $1 $ = $ 5
Thus, the images formed will be 5.
b) When $\theta $ $ = $ $40^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{40^\circ }}$$ = $ 9, where 9 is an odd number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta }$$ = $ 9
Thus, the images formed will be 9.
c) When $\theta $ $ = $ $90^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{90^\circ }}$$ = $ 4, where 4 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 4 $ - $1 $ = $ 3
Thus, the images formed will be 3.
d) When $\theta $ $ = $ $180^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{180^\circ }}$$ = $ 2, where 2 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 2 $ - $1 $ = $ 1
Thus, the images formed will be 1.
Hence the correct option for the problem is a $ = $3, b $ = $1, c $ = $2, d $ = $5.
Note: 1) If $\dfrac{{360^\circ }}{\theta }$ is a fraction, then the number of images formed will be equal to its integral part.
2) The smaller the angle, the greater the number of images.
Recently Updated Pages
JEE Main Maths Preparation Tips 2026: Expert Guide to High Scores

JEE Main Colleges 2026 List: Admission Details for NITs, IIITs, GFTIs

Uniform Acceleration: Definition, Equations & Graphs for JEE/NEET

Mass vs Weight: Key Differences, Units & Examples Explained

JEE Main 2026 FAQs: Answers to Eligibility, Exam Pattern, Syllabus & Attempts

JEE Main 2026 Toppers List (To Be Released) – Check NTA Scores, State & Category Wise

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

CBSE Class 10 Sanskrit Set 4 52 Question Paper 2025 – PDF, Solutions & Analysis

Collision: Meaning, Types & Examples in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

