Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Binomial Theorem Class 11 Notes CBSE Maths Chapter 7 (Free PDF Download)

ffImage
banner

Revision Notes for CBSE Class 11 Maths Chapter 7 (Binomial Theorem) - Free PDF Download

We at Vedantu have prepared notes for Binomial theorem Class 11 to help students study the entire subject in a short period of time with 100% accuracy. All the notes and study materials are prepared by the Vedantu expert teachers.

We at Vedantu offer NCERT solutions, Study Materials, and Notes for various subjects for free. The Class 11 maths revision notes will help you to thoroughly revise the Maths Chapter 11 Binomial Theorem. Download the free pdf notes right now by visiting the Vedantu website or downloading the Vedantu app!

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Binomial Theorem Class 11 Notes Maths - Basic Subjective Questions


Section–A (1 Mark Questions)

1. Find the number of terms in the expansion of (1+x)10 + (1-x)10.

Ans. The expansion of $(1+x)^{10}+(1-x)^{10}$ is given as


$\begin{aligned} & {\left[{ }^{10} C_0 x^0+{ }^{10} C_1 x^1+{ }^{10} C_2 x^2+\ldots+{ }^{10} C_{10} x^{10}\right]+} \\ & {\left[{ }^{10} C_0(-x)^0+{ }^{10} C_1(-x)^1+{ }^{10} C_2(-x)^2+\ldots+{ }^{10} C_{10}(-x)^{10}\right]}\end{aligned}$


$=2\left[{ }^{10} C_0 x^0+{ }^{10} C_2 x^2+{ }^{10} C_4 x^4+\ldots+{ }^{10} C_{10} x^{10}\right]$


Hence, the number of terms in the given expansion is 6 .


2. What is the value of $\sum_{r=0}^{r=n} 4^{r n} C_r$ . 

Ans.

$$ \begin{aligned} & \sum_{r=0}^{r=n} 4^{r n} C_r=4^{0 . n} C_0+4^{1 .} C_1+4^{2 n} \cdot C_2+\ldots+4^{n . n} C_n \\ & \quad={ }^n C_0 \cdot 4^0+{ }^n C_1 \cdot 4^1+{ }^n C_2 \cdot 4^2+\ldots+{ }^n C_n \cdot 4^n \\ & =(1+4)^n=5^n . \end{aligned} $$


3. Find the general term in the expansion of $\left(2 a+\frac{b}{2}\right)^n$,$n\epsilon N$. 

Ans. The general term in the expansion of $\left(2 a+\frac{b}{2}\right)^n$ is -

$$T_{r+1}={ }^n C_r \cdot(2 a)^{n-r}\left(\frac{b}{2}\right)^r=2^{n-2 r n} \cdot C_r \cdot a^{n-r} b^r$$


4. Using binomial theorem, write down the expansion of (1-3x)7

Ans. The binomial expansion of $(1-3 x)^7$ is given by

$$ \begin{aligned} & { }^7 C_4(3 x)^6-{ }^7 C_1(3 x)^1+{ }^7 C_2(3 x)^2-{ }^7 C_1(3 x)^3+{ }^7 C_4(3 x)^4 \\ & -{ }^7 C_5(3 x)^5+{ }^7 C_6(3 x)^6-{ }^7 C_7(3 x)^7 \\ & =1-21 x+189 x^2-945 x^3+2835 x^4 \\ & -5103 x^5+5103 x^6-2187 x^7 . \end{aligned} $$


5. Find the 5th term from the end in the expansion of $\left(3 x-\frac{1}{x^2}\right)^{10}$.  

Ans. The $5^{\text {th }}$ term from the end in $\left(3 x-\frac{1}{x^2}\right)^{10}=5^{\text {th }}$ term from the beginning in $\left(\frac{1}{x^2}-3 x\right)^{10}$ which is given by

$$ \begin{aligned} T_5=T_{4+1} & ={ }^{10} C_4\left(\frac{1}{x^2}\right)^{10-4}(-3 x)^4 \\ & =3^{4.10} C_4 x^{-8} \\ & =\frac{10 \times 9 \times 8 \times 7 \times 81}{4 \times 3 \times 2 \times 1 \times x^8} \\ & =\frac{17010}{x^8} \end{aligned} $$


Section–B (2 Marks Questions)

6. Find the 8th term in the expansion of $\left(x^{\frac{3}{2}} y^{\frac{1}{2}}-x^{\frac{1}{2}} y^{\frac{3}{2}}\right)^{10}$ .

Ans. The $8^{\text {sh }}$ term in the expansion of $\left(x^{\frac{3}{2}} y^{\frac{1}{2}}-x^{\frac{1}{2}} y^{\frac{3}{2}}\right)^{10}$ is given by-

$$ \begin{aligned} \because \quad T_8 & =T_{7+1} \\ T_8=T_{7+1} & ={ }^{10} C_7\left(x^{\frac{3}{2}} y^{\frac{1}{2}}\right)^{10-7}\left(-x^{\frac{1}{2}} y^{\frac{3}{2}}\right)^7 \\ & =-\frac{10 !}{7 ! \times 3 !} x^{\frac{9}{2}+\frac{7}{2}} \cdot y^{\frac{3}{2}+\frac{21}{2}} \\ & =-\frac{10 \times 9 \times 8}{3 \times 2} x^8 y^{12} \\ & =-120 x^8 y^{12} \end{aligned} $$


7. If p is a real number and if the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120, then find the value of p.

Ans. In the binomial expansion of $\left(\frac{p}{2}+2\right)^8$, we observe that $\left(\frac{8}{2}+1\right)^{\text {sh }}$ i.e., $5^{\text {th }}$ term is the middle term.

It is given that the middle term is 1120 .

$$ \begin{aligned} & \therefore T_5=1120 \\ & \Rightarrow{ }^8 C_4\left(\frac{p}{2}\right)^{8-4}(2)^4=1120 \\ & \Rightarrow \frac{8 !}{4 ! \times 4 !} p^4=1120 \\ & \Rightarrow p^4=16 \\ & \Rightarrow p= \pm 2 \end{aligned} $$

Hence, the real values of $p$ is $\pm 2$ .


8. Find the Constant term in the expansion of $\left(x-\frac{1}{x}\right)^{10}$ .

Ans. The general term for the expansion of $\left(x-\frac{1}{x}\right)^{10}$ can be given by


$$ \begin{aligned} T_{r+1} & ={ }^{10} C_r(x)^{10-r}\left(-\frac{1}{x}\right)^r \\ & =(-1)^r{ }^{10} C_r(x)^{10-2 r} \end{aligned} $$


For constant term,


$$\begin{aligned}& 10-2 r=0 \\& \Rightarrow r=5\end{aligned}$$


Therefore,


$$T_{5+1}={ }^{10} C_5(-1)^5=-252$$


Hence, the constant term is -252 .


9. Does the expansion $\left(2 x^2-\frac{1}{x}\right)^{20}$ contain any term involving x9.

Ans. Suppose $x^9$ occurs in the given expression $\left(2 x^2-\frac{1}{x}\right)^{20}$ at the $(r+1)^{t h}$ term.


Then, we have


$$T_{r+1}={ }^{20} C_r\left(2 x^2\right)^{20-r}\left(-\frac{1}{x}\right)^r$$


$$=(-1)^r \cdot{ }^{20} C_r(2)^{20-r}(x)^{10-2 r-r}$$


For this term to contain $x^9$, we must have


$$\begin{aligned}& 40-3 r=9 \\& \Rightarrow 3 r=31 \\& \Rightarrow r=\frac{31}{3}\end{aligned}$$


It is not possible, as $r$ is not an integer.


Hence, there is no term with $x^9$ in the given expression.


10. Prove that the coefficient of $(r+1)^{\text {th }}$  term in the expansion of $(1+x)^{n+1}$  is equal to the sum of the coefficients of rth and (r+1)th terms in the expansion of (1+x)n.

Ans. Coefficient of the $(r+1)^{\text {th }}$ term in $(1+x)^{n+1}$ is ${ }^{n+1} C_{\text {. }}$.


Coefficient of the $r^{\text {th }}$ term in $(1+x)^n$ is ${ }^n C_{r-1}$.


Coefficient of the $(r+1)^{16}$ term in $(1+x)^n$ is " $C_r$.


Therefore,


Sum of the coefficients of the $r^{\text {tk }}$ and $(r+1)^{t h}$ terms in $(1+x)^n={ }^n C_{r-1}+{ }^n C_r$ $={ }^{n+1} C_r \quad\left[\because{ }^a C_{r-1}+{ }^n C_r={ }^{n+1} C_r\right]$


Hence proved.


11. Find the 4th term from the end in the expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^8$ .  

Ans. Let $T_4$ be the $4^{\text {tk }}$ term from the end of the given expression, Then,

$4^{\text {th }}$ term from the end in $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^8=4^{\text {in }}$ term from the beginning in $\left(\frac{5}{2 x}-\frac{4 x}{5}\right)^8$ Thus, we have


$$T_4=T_{3+1}={ }^8 C_3\left(\frac{5}{2 x}\right)^{8-3}\left(-\frac{4 x}{5}\right)^3$$


$$\begin{aligned}& =-{ }^3 C_3\left(\frac{5}{2}\right)^5\left(\frac{4}{5}\right)^3 x^{-2} \\& =-C_3 \cdot 5^2 \cdot 2^1 x^{-2} \\& =-\frac{8 !}{3 ! \times 5 !} \cdot \frac{50}{x^2} \\& =-\frac{8.7 \cdot 6}{3.2} \cdot \frac{50}{x^2} \\& =-\frac{2800}{x^2} .\end{aligned}$$


12. Find the term independent of x in the expansion of $\left(2 x+\frac{1}{3 x^2}\right)^9$ .

Ans. Suppose the $(r+1)^{t h}$ term in the given expansion $\left(2 x+\frac{1}{3 x^2}\right)^9$ is independent of $x$.

Thus,


$$T_{r+1}={ }^9 C_r(2 x)^{9-r}\left(\frac{1}{3 x^2}\right)^r={ }^9 C_r \cdot \frac{2^{9-r}}{3^r} x^{9-3 r}$$


For this term to be independent of $x$, we must have


$$\begin{aligned}& 9-3 r=0 \\& \Rightarrow r=3\end{aligned}$$


Hence, the required term is the $4^{\text {tit }}$ term which can be written as


$$\begin{aligned}T_4=T_{3+1} & ={ }^9 C_3 \frac{2^{9-3}}{3^3}={ }^9 C_3 \times \frac{2^6}{3^3} \\& =\frac{9 !}{3 ! 6 !} \times \frac{2^6}{3^3}=\frac{1792}{9} .\end{aligned}$$


13. If the coefficients of $(2r+1)^{th}$ term and $(r+2)^{th}$ term in the expansion of  (1+x)^{43}are equal, find r.

Ans. We know that the coefficient of the $r^{\text {th }}$ term in the expansion of $(1+x)^n$ is " $C_{r-1}$.

Therefore, the coefficients of the $(2 r+1)^{k r}$ and $(r+2)^{\text {th }}$ terms in the given expression are ${ }^{43} C_{2 r}$ and ${ }^{43} C_{r \rightarrow 1}$.

For these coefficients to be equal, we must have,

2r= r+1 or 2r + r + 1 = 43

$\left [ Q\;^{n}C_{r}=^{n}C_{s} \Rightarrow r=s\; or\;r+s=n\right ]$

$\Rightarrow$ r=1 or r=14

$\Rightarrow$ r=14

($\because$ for r=1 it gives the same term). 


PDF Summary - Class 11 Maths Binomial Theorem Notes (Chapter 7)


  • The computations become harder when employing repeated multiplication for higher powers like ${{\left( 93 \right)}^{8}},{{\left( 105 \right)}^{7}},{{\left( 305 \right)}^{4}},...$ and so on.

  • A theorem known as the binomial theorem was used to solve this problem. 

  • It simplifies the expansion of ${{\left( \text{a+b} \right)}^{\text{n}}}$, where $\text{n}$ is an integer or a rational number.


Binomial Theorem

  • If \[\text{a, b }\in \text{ R}\]and \[\text{n }\in \text{ N}\] , then

\[{{\left( \text{a+b} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{a}}^{\text{n}}}{{\text{b}}^{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{a}}^{\text{n-1}}}{{\text{b}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{a}}^{\text{n-2}}}{{\text{b}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{a}}^{\text{0}}}{{\text{b}}^{\text{n}}}\]

  • Remarks :

  1. If the binomial's index is $\text{n}$, the expansion will have $\text{n+1}$ terms .

  2. The total sum of the indices of $\text{a}$ and $\text{b}$ in each term is always $\text{n}$.

  3. In a binomial expansion equidistant from both ends, the coefficients of the terms are equal.

  4. \[{{\left( \text{a-b} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{a}}^{\text{n}}}{{\text{b}}^{\text{0}}}-{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{a}}^{\text{n-1}}}{{\text{b}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{a}}^{\text{n-2}}}{{\text{b}}^{\text{2}}}\text{+}.....\text{+}\left( -1 \right){}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{a}}^{\text{0}}}{{\text{b}}^{\text{n}}}\]


Binomial Theorem for Positive Integral Indices

  • \[{{\left( \text{a+b} \right)}^{\text{0}}}\text{=1}\], where \[\text{a+b }\ne 0\]

\[{{\left( \text{a+b} \right)}^{\text{1}}}\text{= a+b}\]

\[{{\left( \text{a+b} \right)}^{\text{2}}}\text{= }{{\text{a}}^{\text{2}}}\text{+2ab+}{{\text{b}}^{\text{2}}}\]

\[{{\left( \text{a+b} \right)}^{\text{3}}}\text{= }{{\text{a}}^{\text{3}}}\text{+3}{{\text{a}}^{\text{2}}}\text{b+3a}{{\text{b}}^{\text{2}}}\text{+}{{\text{b}}^{\text{3}}}\]

\[{{\left( \text{a+b} \right)}^{\text{4}}}\text{=}{{\left( \text{a+b} \right)}^{\text{3}}}\text{. }\left( \text{a+b} \right)\text{=}{{\text{a}}^{\text{4}}}\text{+4}{{\text{a}}^{\text{3}}}\text{b+6}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}\text{+4a}{{\text{b}}^{\text{3}}}\text{+}{{\text{b}}^{\text{4}}}\]

  • We can see in these expansions that

  1. There are one more terms in the expansion than the terms present in the index.

  2. In each term, the powers of the first quantity ‘$\text{a}$' decrease by one, while the powers of the second quantity ‘$\text{b}$' increase by one.

  3. The index of $\left( \text{a+b} \right)$ is equal to the total of the indices of $\text{a}$ and $\text{b}$ in each term of the expansion.


Pascal’s Triangle:

  • The expansion coefficients are organised in a triangle-shaped array with $\left( \text{1} \right)$ at the top vertex and running down the two slanting sides. This arrangements is known as “Pascal's triangle”.

  • Pingla also refers to it as Meru Prastara.

  • Pascal's triangle can also be used to expand binomials to their higher powers.

  • Here, Combination method is used.

\[{}^{\text{n}}{{\text{C}}_{\text{r}}}\text{=}\dfrac{\text{n!}}{\text{r!}\left( \text{n-r} \right)\text{!}}\] , \[\text{0}\le \text{r}\le \text{n}\]

Where, \[\text{n}\]is a non-negative number.

  • \[{}^{\text{n}}{{\text{C}}_{\text{0}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{n}}}\text{=1}\]


Binomial Theorem for any Positive Integer\[n\]:

  • \[{{\left( \text{a+b} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{a}}^{\text{n}}}{{\text{b}}^{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{a}}^{\text{n-1}}}{{\text{b}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{a}}^{\text{n-2}}}{{\text{b}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{a}}^{\text{0}}}{{\text{b}}^{\text{n}}}\]

That is,

\[{{\left( \text{a+b} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{a}}^{\text{n}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{a}}^{\text{n-1}}}{{\text{b}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{a}}^{\text{n-2}}}{{\text{b}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{b}}^{\text{n}}}\]


  • Remarks:

  1. Binomial theorem can also be written as,

\[{{\left( \text{a+b} \right)}^{\text{n}}}=\sum\limits_{\text{k=0}}^{\text{n}}{{}^{\text{n}}{{\text{C}}_{\text{k}}}{{\text{a}}^{\text{n-k}}}{{\text{b}}^{\text{k}}}}\]

Where, \[\sum\limits_{\text{k=0}}^{\text{n}}{{}^{\text{n}}{{\text{C}}_{\text{k}}}{{\text{a}}^{\text{n-k}}}{{\text{b}}^{\text{k}}}}\] represents 

\[{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{a}}^{\text{n}}}{{\text{b}}^{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{a}}^{\text{n-1}}}{{\text{b}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{a}}^{\text{n-2}}}{{\text{b}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{a}}^{\text{0}}}{{\text{b}}^{\text{n}}}\]

  1. The coefficients \[{}^{\text{n}}{{\text{C}}_{\text{r}}}\]are known as binomial coefficients.

Example: Compute \[{{\left( 99 \right)}^{5}}\]

Ans:

We can consider \[99\] as follows,

\[99=100-1\]

Therefore, 

\[{{\left( 99 \right)}^{5}}={{\left( 100-1 \right)}^{5}}\]

By applying Binomial Theorem for above, we get

${{\left( 99 \right)}^{5}}={}^{5}{{\text{C}}_{0}}{{\left( 100 \right)}^{5}}{{.1}^{0}}-{}^{5}{{\text{C}}_{1}}{{\left( 100 \right)}^{4}}{{.1}^{1}}+{}^{5}{{\text{C}}_{2}}{{\left( 100 \right)}^{3}}{{.1}^{2}}-{}^{5}{{\text{C}}_{3}}{{\left( 100 \right)}^{2}}{{.1}^{3}} +{}^{5}{{\text{C}}_{4}}{{\left( 100 \right)}^{1}}{{.1}^{4}}+{}^{5}{{\text{C}}_{5}}{{\left( 100 \right)}^{0}}{{.1}^{5}}$

$ =100000000005\times 100000000\times 1+10\times 1000000\times 110\times 10000\times 1  +5\times 100\times 11 $

\[=10000000000-500000000+10000000-100000+500-1\]

\[=9509900499\]

Therefore,

\[{{\left( 99 \right)}^{5}}=9509900499\]


General Term and Middle Terms in Expansion of \[{{\left( \text{a+b} \right)}^{\text{n}}}\]:

  • \[{{\text{t}}_{\text{r+1}}}\text{= }{{\text{ }}^{\text{n}}}{{\text{C}}_{\text{r}}}{{\text{a}}^{\text{n-r}}}+{{\text{b}}^{\text{r}}}\]

  • \[{{\text{t}}_{\text{r+1}}}\] is known as a general term for all \[\text{r}\in \text{N}\] and \[\text{0}\le \text{r}\le \text{n}\].

  • By using this formula, any term of the expansion can be calculated.

  • MIDDLE TERM \[\left( \text{S} \right)\] :

  1. In \[{{\left( \text{a+b} \right)}^{\text{n}}}\]  if \[\text{n}\] is even then the number of terms in the expansion is odd. Therefore there is only one middle term and it is \[{{\left( \dfrac{\text{n}+2}{2} \right)}^{\text{th}}}\] term.

  2. In \[{{\left( \text{a+b} \right)}^{\text{n}}}\], if n is odd then the number of terms in the expansion is even. Therefore there are two middle terms and those are \[{{\left( \dfrac{\text{n}+1}{2} \right)}^{\text{th}}}\] and  \[{{\left( \dfrac{\text{n}+3}{2} \right)}^{\text{th}}}\] terms.


Binomial Theorem for any Index:

If \[\text{n}\] is negative integer then \[\text{n!}\] cannot be defined. We state binomial theorem in another form.

\[{{\left( \text{a+b} \right)}^{\text{n}}}\text{=}{{\text{a}}^{\text{n}}}\text{+}\dfrac{\text{n}}{1!}{{\text{a}}^{\text{n-1}}}{{\text{b}}^{\text{1}}}\text{+}\dfrac{\text{n}\left( \text{n}-1 \right)}{2!}{{\text{a}}^{\text{n-2}}}{{\text{b}}^{\text{2}}}\text{+}.....\text{+}\dfrac{\text{n}\left( \text{n}-1 \right)\left( \text{n}-\text{r}+1 \right)}{\text{r}!}{{\text{a}}^{\text{n-r}}}{{\text{b}}^{\text{r}}}+...\]

Here,

\[{{\text{t}}_{\text{r+1}}}\text{ = }\dfrac{\text{n}\left( \text{n}-1 \right)\left( \text{n}-\text{r}+1 \right)}{\text{r}!}{{\text{a}}^{\text{n-r}}}{{\text{b}}^{\text{r}}}\]


Theorem :

  • If \[\text{n}\] is any real number,

\[\text{a = 1,b = x}\] and \[\left| \text{x} \right| < 1\] then

\[{{\left( 1+\text{x} \right)}^{\text{n}}}\text{= 1+ nx + }\dfrac{\text{n}\left( \text{n}-1 \right)}{\text{2}!}{{\text{x}}^{2}}+\text{ }\dfrac{\text{n}\left( \text{n}-1 \right)\left( \text{n}-2 \right)}{\text{3}!}{{\text{x}}^{3}}+...\]

Here there are infinite number of terms in the expansion, the general term is given by

\[{{\text{t}}_{\text{r+1}}}\text{ = }\dfrac{\text{n}\left( \text{n}-1 \right)\left( \text{n}-2 \right)\left( \text{n}-\text{r}+1 \right)}{\text{r}!}\text{, r}\ge \text{0}\]


Note:

  1. Expansion is valid only when \[\text{-1 x 1}\]

  2. \[^{\text{n}}{{\text{C}}_{\text{r}}}\] can not be used because it is defined only for natural number, so \[^{\text{n}}{{\text{C}}_{\text{r}}}\] can be written as \[\dfrac{\text{n}\left( \text{n}-1 \right)\left( \text{n}-2 \right)\left( \text{n}-\text{r}+1 \right)}{\text{r}!}\]

  3. As the series never terminates, the number of terms in the series is infinite.

  4. General term of the series \[{{\text{(1+x)}}^{-\text{n}}}={{\text{T}}_{\text{r+1}}}\to {{\left( -1 \right)}^{\text{r}}}\]

\[\dfrac{\text{1+x}}{\text{1-x}}\] if \[\left| \text{x} \right| < 1\]

  1. General term of the series \[{{\text{(1+x)}}^{-\text{n}}}\to {{\text{T}}_{\text{r+1}}}\]

\[\text{= }\dfrac{\text{   }\left( \text{ -1} \right)\left( \text{ +2} \right)...\left( \text{ +  -1} \right)}{\text{r!}}\text{x}\] 

  1. If first term is not $1$, then make it unity in the following way.

\[{{\text{(a+x)}}^{\text{n}}}={{\text{a}}^{\text{n}}}{{\left( \dfrac{\text{1+x}}{\text{a}} \right)}^{\text{n}}}\]if \[\left| \dfrac{\text{x}}{\text{a}} \right| < 1\]


Remarks:

  1. If \[\left| \text{x} \right| < 1\] and \[\text{n}\]is any real number, then

\[{{\left( 1-\text{x} \right)}^{\text{n}}}\text{= 1- nx + }\dfrac{\text{n}\left( \text{n}-1 \right)}{\text{2}!}{{\text{x}}^{2}}-\text{ }\dfrac{\text{n}\left( \text{n}-1 \right)\left( \text{n}-2 \right)}{\text{3}!}{{\text{x}}^{3}}+...\]

The general term is given by

\[{{\text{t}}_{\text{r+1}}}\text{ = }\dfrac{{{\left( -1 \right)}^{\text{r}}}\text{n}\left( \text{n}-1 \right)\left( \text{n}-2 \right)\left( \text{n}-\text{r}+1 \right)}{\text{r}!}{{\text{x}}^{\text{r}}}\]

  1. If \[\text{n}\]is any real number and \[\left| \text{b} \right| < \left| \text{a} \right|\], then

\[{{\text{(a+b)}}^{\text{n}}}={{\left[ \text{a}\left( 1+\dfrac{\text{b}}{\text{a}} \right) \right]}^{\text{n}}}\]

\[{{\text{(a+b)}}^{\text{n}}}={{\text{a}}^{\text{n}}}{{\left( 1+\dfrac{\text{b}}{\text{a}} \right)}^{\text{n}}}\]


Note:

While expanding \[{{\text{(a+b)}}^{\text{n}}}\] where \[\text{n}\]a negative integer or a fraction is, reduce the binomial to the form in which the first term is unity and the second term is numerically less than unity.

Particular expansion of the binomials for negative index, \[\left| \text{x} \right| < 1\]

$\dfrac{\text{1}}{\text{1+x}}\text{ = }{{\left( \text{1+x} \right)}^{\text{-1}}}  \text{        = 1-x+}{{\text{x}}^{\text{2}}}\text{-}{{\text{x}}^{\text{3}}}\text{+}{{\text{x}}^{\text{4}}}\text{-}{{\text{x}}^{\text{5}}}\text{+}....$

$\dfrac{\text{1}}{\text{1-x}}\text{ = }{{\left( \text{1-x} \right)}^{\text{-1}}} \text{        = 1+x+}{{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{3}}}\text{+}{{\text{x}}^{\text{4}}}\text{+}{{\text{x}}^{\text{5}}}\text{+}....$

$\dfrac{\text{1}}{{{\left( \text{1+x} \right)}^{2}}}\text{ = }{{\left( \text{1+x} \right)}^{\text{-2}}} \text{        = 1-2x+3}{{\text{x}}^{\text{2}}}\text{-4}{{\text{x}}^{\text{3}}}\text{+}.... $

$ \dfrac{\text{1}}{{{\left( \text{1-x} \right)}^{2}}}\text{ = }{{\left( \text{1-x} \right)}^{\text{-2}}} \text{        = 1+2x+3}{{\text{x}}^{\text{2}}}\text{+4}{{\text{x}}^{\text{3}}}\text{+}.... $


Binomial Coefficients:

The coefficients \[{}^{\text{n}}{{\text{C}}_{\text{0}}}\text{,}{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{,}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{, }..\text{ ,}{}^{\text{n}}{{\text{C}}_{\text{n}}}\] in the expansion of \[{{\text{(a+b)}}^{\text{n}}}\] are called the binomial coefficients and denoted as \[{{\text{C}}_{0}},{{\text{C}}_{1}},{{\text{C}}_{2}},..,{{\text{C}}_{\text{n}}}\] respectively.

Now,

\[{{\left( \text{1+x} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{x}}^{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{x}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{x}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}.....\left( \text{i} \right)\]

Put \[\text{x}=1\]

\[{{\left( \text{1+1} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}\]

\[\therefore \text{   }{{\text{2}}^{\text{n}}}\text{ = }{}^{\text{n}}{{\text{C}}_{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}\]

\[\therefore {}^{\text{n}}{{\text{C}}_{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}={{\text{2}}^{\text{n}}}\]

\[\therefore {{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{{\text{C}}_{\text{n}}}={{\text{2}}^{\text{n}}}\]

Therefore, The sum of all binomial coefficients is \[{{\text{2}}^{\text{n}}}\]

Put \[\text{x}=-1\]in equation \[\left( \text{i} \right)\], we get

\[{{\left( \text{1-1} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}-{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{- }.....\text{+}{{\left( -1 \right)}^{\text{n}}}{}^{\text{n}}{{\text{C}}_{\text{n}}}\]

\[\therefore \text{   0 = }{}^{\text{n}}{{\text{C}}_{\text{0}}}-{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{- }.....\text{+}{{\left( -1 \right)}^{\text{n}}}{}^{\text{n}}{{\text{C}}_{\text{n}}}\]

\[\therefore {}^{\text{n}}{{\text{C}}_{\text{0}}}-{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{- }.....\text{+}{{\left( -1 \right)}^{\text{n}}}{}^{\text{n}}{{\text{C}}_{\text{n}}}=\text{0}\]

\[\therefore {}^{\text{n}}{{\text{C}}_{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{+}{}^{\text{n}}{{\text{C}}_{4}}\text{+ }.....={}^{\text{n}}{{\text{C}}_{\text{1}}}+{}^{\text{n}}{{\text{C}}_{3}}+{}^{\text{n}}{{\text{C}}_{5}}+.....\]

\[\therefore {{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}{{\text{C}}_{4}}\text{+ }.....={{\text{C}}_{\text{1}}}+{{\text{C}}_{3}}+{{\text{C}}_{5}}+.....\]

\[{{\text{C}}_{\text{0}}}\text{,}{{\text{C}}_{\text{2}}}\text{,}{{\text{C}}_{4}},...\] are known as even coefficients

\[{{\text{C}}_{1}}\text{,}{{\text{C}}_{3}}\text{,}{{\text{C}}_{5}},...\] are known as odd coefficients

Let, 

\[{{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}{{\text{C}}_{4}}\text{+ }.....={{\text{C}}_{\text{1}}}+{{\text{C}}_{3}}+{{\text{C}}_{5}}+.....=\text{k}\]

Now,

\[{{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{{\text{C}}_{\text{n}}}={{\text{2}}^{\text{n}}}\]

Therefore,

\[\left( {{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}{{\text{C}}_{\text{4}}}\text{+ }..... \right)\text{ = }\left( {{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{3}}}\text{+}{{\text{C}}_{\text{5}}}\text{+}..... \right)\text{ = }{{\text{2}}^{\text{n}}}\]

\[\text{k+k = }{{\text{2}}^{\text{n}}}\]

\[\text{2k = }{{\text{2}}^{\text{n}}}\]

\[\text{k = }\dfrac{{{\text{2}}^{\text{n}}}}{\text{2}}\]

\[\text{k = }{{\text{2}}^{\text{n-1}}}\]

\[\left( {{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}{{\text{C}}_{\text{4}}}\text{+ }..... \right)\text{ = }\left( {{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{3}}}\text{+}{{\text{C}}_{\text{5}}}\text{+}..... \right)\text{ = }{{\text{2}}^{\text{n-1}}}\]

Therefore,

\[\text{The sum of even coefficients = The sum of odd coefficients = }{{\text{2}}^{\text{n-1}}}\]


Properties of Binomial Coefficient:

The coefficients have been omitted for the sake of simplicity.

\[{}^{\text{n}}{{\text{C}}_{\text{0}}}\text{,}{}^{\text{n}}{{\text{C}}_{\text{1}}}\text{,}{}^{\text{n}}{{\text{C}}_{\text{2}}}\text{, }..\text{ ,}{}^{\text{n}}{{\text{C}}_{\text{r}}},....,{}^{\text{n}}{{\text{C}}_{\text{n}}}\] are denoted by \[{{\text{C}}_{0}},{{\text{C}}_{1}},{{\text{C}}_{2}},..,{{\text{C}}_{\text{r}}}\text{,}....{{\text{C}}_{\text{n}}}\]

  • \[{{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{{\text{C}}_{\text{n}}}={{\text{2}}^{\text{n}}}\]

  • \[{{\text{C}}_{\text{0}}}\text{- }{{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{2}}}\text{- }.....\text{+ }{{\left( -1 \right)}^{\text{n}}}{{\text{C}}_{\text{n}}}=\text{0}\]

  • \[{{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}{{\text{C}}_{4}}\text{+ }.....={{\text{C}}_{\text{1}}}+{{\text{C}}_{3}}+{{\text{C}}_{5}}+.....={{\text{2}}^{\text{n-1}}}\]

  • \[{}^{\text{n}}{{\text{C}}_{{{\text{r}}_{1}}}}={}^{\text{n}}{{\text{C}}_{{{\text{r}}_{2}}}}\Rightarrow {{\text{r}}_{\text{1}}}\text{=}{{\text{r}}_{\text{2}}}\text{ or }{{\text{r}}_{\text{1}}}\text{+}{{\text{r}}_{\text{2}}}\text{=n}\]

  • \[{}^{\text{n}}{{\text{C}}_{\text{r}}}+{}^{\text{n}}{{\text{C}}_{\text{r-1}}}={}^{\text{n+1}}{{\text{C}}_{\text{r}}}\]

  • \[\text{r}{}^{\text{n}}{{\text{C}}_{\text{r}}}=\text{n}{}^{\text{n-1}}{{\text{C}}_{\text{r}}}\]


Some Important Results:

  1. \[{{\left( \text{1+x} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{x}}^{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{x}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{x}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}\]

Putting \[\text{x}=1\] and \[-1\], we get

\[{{\text{C}}_{\text{0}}}\text{+}{{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{2}}}\text{+}.....\text{+}{{\text{C}}_{\text{n}}}={{\text{2}}^{\text{n}}}\]

\[{{\text{C}}_{\text{0}}}\text{- }{{\text{C}}_{\text{1}}}\text{+}{{\text{C}}_{\text{2}}}\text{- }.....\text{+ }{{\left( -1 \right)}^{\text{n}}}{{\text{C}}_{\text{n}}}=\text{0}\]

  1. Differentiating \[{{\left( \text{1+x} \right)}^{\text{n}}}\text{=}{}^{\text{n}}{{\text{C}}_{\text{0}}}{{\text{x}}^{\text{0}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{1}}}{{\text{x}}^{\text{1}}}\text{+}{}^{\text{n}}{{\text{C}}_{\text{2}}}{{\text{x}}^{\text{2}}}\text{+}.....\text{+}{}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}\] , on both sides, \[\text{n}{{\left( \text{1+x} \right)}^{\text{n -1}}}\]

\[\text{= }{{\text{C}}_{1}}\text{+2}{{\text{C}}_{\text{1}}}\text{x+3}{{\text{C}}_{3}}{{\text{x}}^{2}}\text{+}.....\text{+n}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n -1}}}.....\left( 1 \right)\]

\[\text{x=1}\]

\[\Rightarrow \text{n}{{\text{2}}^{\text{n-1}}}\text{ = }{{\text{C}}_{\text{1}}}\text{+2}{{\text{C}}_{\text{1}}}\text{+3}{{\text{C}}_{\text{3}}}\text{+}.....\text{+n}{{\text{C}}_{\text{n}}}\]

\[\text{x = -1}\]

\[\Rightarrow \text{0 = }{{\text{C}}_{\text{1}}}\text{- 2}{{\text{C}}_{\text{1}}}\text{+}.....\text{+}{{\left( \text{-1} \right)}^{\text{n -1}}}\text{n}{{\text{C}}_{\text{n}}}\]

Differentiating \[\left( 1 \right)\] again and again we will have different results.

  1. Integrating \[{{\left( \text{1 + x} \right)}^{\text{n}}}\], we get

\[\dfrac{{{\left( \text{1+x} \right)}^{\text{n+1}}}}{\text{n+1}}\text{+C=}{{\text{C}}_{\text{0}}}\text{x+}\dfrac{{{\text{C}}_{\text{1}}}{{\text{x}}^{\text{2}}}}{\text{2}}\text{+}\dfrac{{{\text{C}}_{\text{2}}}{{\text{x}}^{\text{3}}}}{\text{3}}\text{+}....\text{+}\dfrac{{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n+1}}}}{\text{n+1}}\]

Where, \[\text{C}\] is a constant.

Put \[\text{x = 0}\], we get

\[\text{C = - }\dfrac{\text{1}}{\left( \text{n+1} \right)}\]

Therefore,

\[\dfrac{{{\left( \text{1+x} \right)}^{\text{n+1}}}\text{-1}}{\text{n+1}}\text{=}{{\text{C}}_{\text{0}}}\text{x+}\dfrac{{{\text{C}}_{\text{1}}}{{\text{x}}^{\text{2}}}}{\text{2}}\text{+}\dfrac{{{\text{C}}_{\text{2}}}{{\text{x}}^{\text{3}}}}{\text{3}}\text{+}....\text{+}\dfrac{{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n+1}}}}{\text{n+1}}.....\left( \text{2} \right)\]

Put \[\text{x = 1}\] in eqn. \[\left( 2 \right)\], we get

\[\dfrac{{{\text{2}}^{\text{n+1}}}\text{-1}}{\text{n+1}}\text{ = }{{\text{C}}_{\text{0}}}\text{+}\dfrac{{{\text{C}}_{\text{1}}}}{\text{2}}\text{+}\dfrac{{{\text{C}}_{\text{2}}}}{\text{3}}\text{+}....\text{+}\dfrac{{{\text{C}}_{\text{n}}}}{\text{n+1}}\]

Put \[\text{x = -1}\] in eqn.\[\left( 2 \right)\], we get

\[\dfrac{\text{1}}{\text{n+1}}\text{ = }{{\text{C}}_{\text{0}}}\text{- }\dfrac{{{\text{C}}_{\text{1}}}}{\text{2}}\text{+}\dfrac{{{\text{C}}_{\text{2}}}}{\text{3}}\text{ - }....\]


Example:

Find the coefficient of \[{{\text{x}}^{4}}\] in the expansion of \[\dfrac{\text{1+ x}}{1-\text{x}}\] if \[\left| \text{x} \right| < 1\]

Ans:

\[\dfrac{\text{1+ x}}{1-\text{x}}=\left( \text{1+ x} \right){{\left( \text{1- x} \right)}^{-1}}\]

\[=\left( \text{1+ x} \right)\left[ 1+\dfrac{\left( -1 \right)}{1!}\left( -\text{x} \right)+\dfrac{\left( -1 \right)\left( -1-1 \right)}{2!}{{\left( -\text{x} \right)}^{2}} +\dfrac{\left( -1 \right)\left( -1-1 \right)\left( -1-2 \right)}{3!}{{\left( -\text{x} \right)}^{3}}+...\infty \right]\]

\[=\left( \text{1+ x} \right)\left( 1+\text{x}+{{\text{x}}^{2}}+{{\text{x}}^{3}}+{{\text{x}}^{4}}+...\infty  \right)\]

\[=\left( 1+\text{x}+{{\text{x}}^{2}}+{{\text{x}}^{3}}+{{\text{x}}^{4}}+...\infty  \right)+\left( \text{x}+{{\text{x}}^{2}}+{{\text{x}}^{3}}+{{\text{x}}^{4}}+...\infty  \right)\]

\[=1+2\text{x}+2{{\text{x}}^{2}}+2{{\text{x}}^{3}}+2{{\text{x}}^{4}}+...\infty \]

\[{{\text{x}}^{4}}=2\]

Hence, the coefficient of \[{{\text{x}}^{4}}\] is \[2\]


Multinomial Expansion:

In the expansion of \[{{\left( {{\text{x}}_{1}}+{{\text{x}}_{2}}+...+{{\text{x}}_{\text{n}}} \right)}^{\text{m}}}\] where \[\text{m,n }\in \text{ N}\] and \[{{\text{x}}_{1}}+{{\text{x}}_{2}}+...+{{\text{x}}_{\text{n}}}\] are independent variables.

We have

  1. Total number of terms \[\text{=}{{\text{ }}^{\text{m+n -1}}}{{\text{C}}_{\text{n -1}}}\]

  2. Coefficient of \[{{\text{x}}_{\text{1}}}^{^{{{\text{r}}_{\text{1}}}}}\text{ }{{\text{x}}_{\text{2}}}^{^{{{\text{r}}_{\text{2}}}}}\text{ }{{\text{x}}_{\text{3}}}^{{{\text{r}}_{\text{3}}}}....{{\text{x}}_{\text{n}}}^{{{\text{r}}_{\text{n}}}}\]

(Where, \[{{\text{r}}_{\text{1}}}+{{\text{r}}_{2}}+....+{{\text{r}}_{n}}=\text{m}\], \[{{\text{r}}_{\text{i}}}\in \text{N }\cup \left\{ 0 \right\}\])  is \[\dfrac{\text{m!}}{{{\text{r}}_{\text{1}}}\text{! }{{\text{r}}_{\text{2}}}\text{! }...\text{ }{{\text{r}}_{\text{n}}}\text{!}}\]

  1. Sum of all the coefficients is obtained by putting all the variables \[{{\text{x}}_{\text{1}}}\] equal to \[1\]


Example:

Find the total number of terms in the expansion of ${{\left( \text{1+a+b} \right)}^{\text{10}}}$ and coefficient of ${{\text{a}}^{\text{2}}}{{\text{b}}^{\text{3}}}$.

Ans:

Total number of terms \[\text{=}{{\text{ }}^{\text{m+n -1}}}{{\text{C}}_{\text{n -1}}}\]

Therefore,

Total number of terms \[\text{=}{{\text{ }}^{\text{10+3 -1}}}{{\text{C}}_{\text{3 -1}}}\]

\[\text{=}{{\text{ }}^{\text{12}}}{{\text{C}}_{\text{2}}}\]

\[=66\]

Coefficient of ${{\text{a}}^{\text{2}}}{{\text{b}}^{\text{3}}}$can be calculated as,

Coefficient of ${{\text{a}}^{\text{2}}}{{\text{b}}^{\text{3}}}$\[=\dfrac{\text{10!}}{\text{2!}\times \text{3!}\times \text{5!}}\]

\[=2520\]


Class 11 Maths Revision Notes for Chapter-8 Binomial Theorem - Free PDF Download

Binomial Expression

The algebraic expression is called binomial, which includes only two terms. It is a polynomial with two terms. It is also known as a sum or difference between two or more monomials. It is the simplest polynomial form.


Binomial Theorem

Here are the necessary formula that you should always try and remember:

(x + y)ⁿ = ⁿCₒxⁿ⁻⁰ y⁰ + ⁿC₁xⁿ⁻¹y¹ + ⁿC₂xⁿ⁻²y² + ………

+ ⁿCᵣx \[^{n-r}\] y\[^{r}\] + ……. + ⁿC\[_{n-1}\] xy\[^{n-1}\] + ⁿC\[_{n}\]x⁰yⁿ

i.e.. (x + y)ⁿ = \[\sum_{r=0}^{n}\] ⁿCᵣ x\[^{n-1}\]y\[^{r}\]   …..(i)

Here ⁿCₒ, ⁿC₁, ⁿC₂,...... ⁿC\[_{n}\] are called binomial coefficients and 

ⁿCᵣ = \[\frac{n!}{r!(n-r)!}\] for 0 ≤ r ≤ n.

This is called the binomial theorem. 

The various terms that you find in the nCx format are known are binomial coefficients.


Properties of the Binomial Expansion

  1. Total number of terms in the expansion of (x + a)n is (n + 1). 

  2. The sum of the indices of x and a in each term is n.  

  3. It is a correct expansion when the terms are complex numbers.

  4. Terms that are equidistant from both ends will have coefficients that are equal. These are termed differently - binomial co-efficients.

  5. General term in the expansion of (x + c)n is given by Tr + 1 = nCrx n – r ar . 

  6. It is important to note that the values first increase and then decrease as you go ahead in the expansion.

  7. The coefficient of xr in the expansion of (1+ x)n is nCr.


Middle Term in the Expansion of(1 + x)n

  1.  If n is even, then in the expansion of (x + a)n, the middle term is (n/2 + 1)th terms. 

  2. If n is odd, then in the expansion of (x + a)n , the middle terms are (n + 1) / 2 th term and (n + 3) / 2 th term.


Greatest Coefficient 

  • If n is even, then in (x + a)n , the greatest coefficient is nCn / 2 

  • If n is odd, then in (x + a)n , the greatest coefficient is nCn – 1 / 2 or nCn + 1 / 2 both being equal. 


Fun Facts about the Greatest Term

Do you know that there are different ways to find the greatest term? You can do this by finding whether certain parts of the resulting expansion are integers or not, one can find the greatest term for each expansion.  It is important to understand the definition of integers and remembering the greatest term’s formula for each of the cases. 


Related Study Materials for Class 12 Maths Chapter 7


Chapter-wise Links for Mathematics Class 11 Notes


Related Important Links for Mathematics Class 11

Along with this, students can also download additional study materials provided by Vedantu for Maths Class 11–


Why Should You Download Revision Notes Class 11 Chapter 7 from Vedantu?

There are several reasons why you should download revision notes of class 11 chapter 7. A list of those reasons is mentioned below.

  • The revision notes will students be more prepared for their examination

  • Students will be able to score better grades and marks

  • Students can easily post their queries on the Vedantu platform and one of our experts will reply with the correct solution to the problem within 24 hours

  • One can learn new topics and chapters by joining the online live classes at Vedantu

WhatsApp Banner

FAQs on Binomial Theorem Class 11 Notes CBSE Maths Chapter 7 (Free PDF Download)

1. What is the quickest way to revise the core concepts of the Binomial Theorem for Class 11 exams?

Begin with understanding the binomial expansion formula (nCr), the properties of binomial coefficients, and the general term structure. Next, review Pascals’ Triangle and typical patterns in coefficients. Make concept maps to link sum of coefficients, term structures, and application for positive, negative, and fractional indices. Rewriting key results and practicing a few expansions will help reinforce memory just before tests.

2. How are binomial coefficients used in quick calculations and problem solving in Chapter 7?

Binomial coefficients help in expanding expressions like (a + b)n and in finding specific term coefficients directly. They are also used to compute the sum and difference of coefficients, establish symmetries in expansions, and calculate probabilities in combinatorics. In revision, focus on how nCr = n! / (r!(n−r)!) applies in different contexts for quicker answers.

3. What are the most important properties of binomial expansion to remember during revision?

  • The sum of the powers in each term equals n (the exponent).
  • There are (n + 1) terms in the expansion of (a + b)n.
  • Terms equidistant from both ends have equal coefficients.
  • The sum of all coefficients is 2n for (1 + x)n
  • The middle term depends on whether n is even or odd.
These facts make revision efficient and support solving MCQs quickly.

4. What is a common misconception students have about the general term in a binomial expansion?

Many students mistake the general term formula Tr+1 = nCr xn−r yr as starting at r = 1 instead of r = 0. Remember, in binomial expansion, r starts from 0, ensuring all terms are correctly included and none are missed at either end.

5. During revision, how can I identify the ‘middle term’ in the binomial expansion?

For (a + b)n:

  • If n is even, there is one middle term: the (n/2 + 1)th term.
  • If n is odd, there are two middle terms: the ((n+1)/2)th and ((n+3)/2)th terms.

This pattern helps in quickly pinpointing the center of an expansion, which is often questioned in competitive and board exams.

6. How can the Binomial Theorem be applied to simplify large exponent calculations in exams?

Instead of direct multiplication, expand adapted forms like (a+b)n using the binomial theorem to obtain required terms or approximate values quickly. For example, (99)5 can be rewritten as (100−1)5 for faster expansion and calculation. This saves time and avoids calculation errors in the exam.

7. What are effective strategies to memorize binomial identities and formulas before exams?

Create a summary sheet with all key binomial formulas, such as binomial expansion, general term, middle term, sum of coefficients, and basic properties. Use color-coding for terms and visualize with Pascals’ Triangle. Frequent self-quizzing and recalling the identities aloud also help retention for quick last-minute revision.

8. Why do binomial coefficients appear symmetric in Pascal’s Triangle and the expansion?

Binomial coefficients are symmetric because nCr = nC(n−r). This symmetry is reflected in Pascals’ Triangle and ensures that terms equidistant from the start and end of the expansion have equal coefficients. Recognizing this symmetry helps in solving pattern-based questions efficiently.

9. What should be the order of priority when revising Binomial Theorem for quick exam preparation?

First, grasp the binomial expansion formula and general term. Second, review properties and identities, including the sum and symmetry of coefficients. Third, practice quick applications for special cases like finding a particular term, middle term, or the sum of coefficients. Last, glance at error patterns and tricky indices (negative or fractional n).

10. How are the core ideas of binomial expansion linked to other topics in Class 11 Maths?

Binomial expansion underpins concepts in permutations and combinations (Chapter 6), probability, and sequences and series. The understanding of nCr, expansions, and term-wise analysis is crucial in manipulating polynomials, counting problems, and even calculus (finding coefficients or approximations). Linking these ideas enhances both conceptual clarity and problem-solving speed across chapters.