
Magnetic intensity for an axial point due to a short bar magnet of magnetic moment M is given by
( a ) $\dfrac{{{u}_{0}}}{4\pi }\times \dfrac{M}{{{d}^{3}}}$
( b ) $\dfrac{{{u}_{0}}}{4\pi }\times \dfrac{M}{{{d}^{2}}}$
( c ) $\dfrac{{{u}_{0}}}{2\pi }\times \dfrac{M}{{{d}^{2}}}$
( d ) $\dfrac{{{u}_{0}}}{2\pi }\times \dfrac{M}{{{d}^{3}}}$
Answer
174k+ views
Hint:
In this question, we have to find out the magnetic intensity for an axial point. First we suppose a magnet and it is at the same axis of the point. Then we will find the magnetic intensity for a short bar magnet by neglecting the length of the magnet.
Complete step by step solution:
We have to find out the magnetic field intensity for an axial point due to a short bar magnet.
We know the magnetic lines flow from the north pole towards the south pole forming circular loops. This induces a magnetic moment and the strength or the intensity of this magnetic field must be calculated.
Let us consider the magnetic field due to some magnet. As we can see that the magnet is placed axially, that is in the same axis of the point.
Then the equation for the magnetic field intensity at a point on the axis of the bar magnet is as follow:-
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}}-{{l}^{2}} \right)}^{2}}}$
Where r is the distance between the point and the centre of the magnet
L is the length of the magnet.
As the magnet used in this question is of short bar magnet then the length of the bar magnet is neglected as it is very small in comparison to the d value.
Then the equation be
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}} \right)}^{2}}}$
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{2\pi }\dfrac{M}{{{d}^{3}}}$
Therefore, the correct option is D.
Note:
In this question, we also remember that at an axial point, the magnetic field has the same direction as that of the magnetic dipole moment vector due to a bar magnet. Since, the north pole is nearer to the point, the magnetic field at that point is higher than the south pole.
In this question, we have to find out the magnetic intensity for an axial point. First we suppose a magnet and it is at the same axis of the point. Then we will find the magnetic intensity for a short bar magnet by neglecting the length of the magnet.
Complete step by step solution:
We have to find out the magnetic field intensity for an axial point due to a short bar magnet.
We know the magnetic lines flow from the north pole towards the south pole forming circular loops. This induces a magnetic moment and the strength or the intensity of this magnetic field must be calculated.
Let us consider the magnetic field due to some magnet. As we can see that the magnet is placed axially, that is in the same axis of the point.
Then the equation for the magnetic field intensity at a point on the axis of the bar magnet is as follow:-
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}}-{{l}^{2}} \right)}^{2}}}$
Where r is the distance between the point and the centre of the magnet
L is the length of the magnet.
As the magnet used in this question is of short bar magnet then the length of the bar magnet is neglected as it is very small in comparison to the d value.
Then the equation be
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{4\pi }\dfrac{2Md}{{{\left( {{d}^{2}} \right)}^{2}}}$
${{\vec{B}}_{axial}}=\dfrac{{{u}_{0}}}{2\pi }\dfrac{M}{{{d}^{3}}}$
Therefore, the correct option is D.
Note:
In this question, we also remember that at an axial point, the magnetic field has the same direction as that of the magnetic dipole moment vector due to a bar magnet. Since, the north pole is nearer to the point, the magnetic field at that point is higher than the south pole.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
Instantaneous Velocity - Formula based Examples for JEE

Electron Gain Enthalpy and Electron Affinity for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Current Loop as Magnetic Dipole and Its Derivation for JEE

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

The ratio of the lengths densities masses and resistivities class 12 physics JEE_Main

Other Pages
Class 12 Physics Formulas: Complete Chapter-wise PDF Guide

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced 2025 Notes

The potential of A is 10V then the potential of B is class 12 physics JEE_Main

MBBS Seats in India 2025: State & College Wise Updates

NEET Total Marks 2025
