Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 9 Maths Chapter 7 Triangles Exercise 7.3 (2025-26)

ffImage
banner
widget title icon
Latest Updates

Class 9 Triangles Exercise 7.3 Solutions for Exam Success with FREE PDF Download

If you are finding Class 9 triangles Exercise 7.3 confusing or getting stuck while solving proof-based questions, you are not alone. Class 9 Maths Chapter 7 Exercise 7.3 focuses on important theorems related to triangles, and many students struggle with understanding the correct logic, reasons, and step-by-step proofs involved.

toc-symbolTable of Content
toggle-arrow


This page provides well-explained Class 9 Maths triangles Exercise 7.3 solutions to help students grasp each concept clearly. With Vedantuโ€™s NCERT Solutions for Class 9 Maths Exercise 7.3, every question is solved in a simple and systematic manner, making it easier to understand how and why each step is used.


These Class 9 Maths Exercise 7.3 solutions are perfect for revising proofs, checking answers, and correcting mistakes. Students can also download the Class 9th Maths Chapter 7 Exercise 7.3 NCERT Solutions PDF for free and use it anytime for quick revision and exam preparation.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions For Class 9 Maths Chapter 7 Triangles Exercise 7.3 (2025-26)
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES L-1 (๐‚๐จ๐ง๐ ๐ซ๐ฎ๐ž๐ง๐œ๐ž ๐จ๐Ÿ ๐“๐ซ๐ข๐š๐ง๐ ๐ฅ๐ž๐ฌ & ๐‚๐ซ๐ข๐ญ๐ž๐ซ๐ข๐š ๐Ÿ๐จ๐ซ ๐‚๐จ๐ง๐ ๐ซ๐ฎ๐ž๐ง๐œ๐ž ๐จ๐Ÿ ๐“๐ซ๐ข๐š๐ง๐ ๐ฅ๐ž๐ฌ) CBSE 9 Maths -Term 1
3K likes
90.9K Views
4 years ago
Vedantu 9&10
Subscribe
iconShare
Triangles in 30 Minutes | Crash Course | Maths | Gopal Sir | Vedantu Class 9
11.2K likes
364.2K Views
6 years ago

Score Higher with Class 9 Triangles Exercise 7.3 Solutions for Better Revision

Exercise 7.3

1. \[\mathbf{\text{ }\!\!\Delta\!\!\text{ ABC}}\] and \[\mathbf{\text{ }\!\!\Delta\!\!\text{ DBC}}\] are two isosceles triangles on the same base \[\mathbf{\text{BC}}\] and vertices \[\mathbf{\text{A}}\] and \[\mathbf{\text{D}}\] are on the same side of \[\mathbf{\text{BC}}\] (see the given figure). If \[\mathbf{\text{AD}}\] is extended to intersect \[\mathbf{\text{BC}}\] at \[\mathbf{\text{P}}\], show that:


seo images

(i) \[\mathbf{\text{ }\!\!\Delta\!\!\text{ ABD}\cong \text{ }\!\!\Delta\!\!\text{ ACD}}\]

Ans: In \[\text{ }\!\!\Delta\!\!\text{ ABD}\] and \[\text{ }\!\!\Delta\!\!\text{ ACD}\],

\[\text{AB=AC}\]                                           (Given)

\[\text{BD=CD}\]                                           (Given)

\[\text{AD=AD}\]                                          (Common)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ ABD}\cong \text{ }\!\!\Delta\!\!\text{ ACD}\]         (By \[\text{SSS}\] rule)

\[\angle \text{BAD=}\angle \text{CAD}\]                            (By \[CPCT\])

\[\angle \text{BAP=}\angle \text{CAP}\]

(ii) \[\mathbf{\text{ }\!\!\Delta\!\!\text{ ABP }\cong \text{ }\!\!\Delta\!\!\text{ ACP}}\]

Ans: In \[\text{ }\!\!\Delta\!\!\text{ ABP}\] and \[\text{ }\!\!\Delta\!\!\text{ ACP}\],

\[\text{AB=AC}\]                                         (Given)

\[\angle \text{BAP = }\angle \text{CAP}\]

\[\text{AP= AP}\]                                         (Common)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ ABP }\cong \text{  }\!\!\Delta\!\!\text{ ACP}\]          (By \[\text{SAS}\] congruence rule)

Therefore, \[\text{BP=CP}\]                         (By \[CPCT\])

(iii) \[\mathbf{\text{AP}}\] bisects \[\mathbf{\angle \text{A}}\] as well as \[\mathbf{\angle \text{D}}\].

Ans: Since, \[\angle \text{BAP=}\angle \text{CAP}\],

Therefore, \[\text{AP}\] bisects \[\angle \text{A}\].

In \[\text{ }\!\!\Delta\!\!\text{ BDP}\] and \[\text{ }\!\!\Delta\!\!\text{ CDP}\],

\[\text{BD= CD}\]                                      (Given)

\[\text{DP=DP}\]                                        (Common)

\[\text{BP= CP}\]

Therefore, \[\text{ }\!\!\Delta\!\!\text{ BDP}\cong \text{ }\!\!\Delta\!\!\text{ CDP}\]       (By \[\text{SSS}\] congruence rule)

Therefore, \[\angle \text{BDP=}\angle \text{CDP}\]        (By \[\text{CPCT}\])

Hence, \[\text{AP}\] bisects \[\angle \text{D}\].

(iv) \[\mathbf{\text{AP}}\] is the perpendicular bisector of \[\mathbf{\text{BC}}\].

Ans: Since \[\text{ }\!\!\Delta\!\!\text{ BDP}\cong \text{ }\!\!\Delta\!\!\text{ CDP}\],

Therefore, 

\[\angle \text{BPD =}\angle \text{CPD}\]                           (By \[\text{CPCT}\])

\[\angle \text{BPD+}\angle \text{CPD=18}{{\text{0}}^{\text{o}}}\]                   (Linear pair of angles)

\[\angle \text{BPD +}\angle \text{BPD = 18}{{\text{0}}^{\text{o}}}\]                (Since \[\angle \text{BDP=}\angle \text{CDP}\])

\[\text{2}\angle \text{BPD=18}{{\text{0}}^{\text{o}}}\]

\[\angle \text{BPD = 9}{{\text{0}}^{\text{o}}}\]

Hence \[\text{AP}\] is the perpendicular bisector of \[\text{BC}\].


2. \[\mathbf{AD}\] is an altitude of an isosceles triangles \[\mathbf{ABC}\] in which \[\mathbf{\text{AB=AC}}\]. Show that:


seo images

(i) \[\mathbf{AD}\] bisects \[\mathbf{\text{BC}}\]

Ans: In \[\text{ }\!\!\Delta\!\!\text{ BAD}\] and \[\text{ }\!\!\Delta\!\!\text{ CAD}\],

\[\angle \text{ADB= }\angle \text{ADC}\]                           (Each \[\text{90 }\!\!{}^\text{o}\!\!\text{ }\])

\[\text{AB=AC}\]                                        (Given)

\[\text{AD=AD}\]                                       (Common)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ BAD }\cong \text{ }\!\!\Delta\!\!\text{ CAD}\]        (By \[\text{RHS}\] congruence rule)

Therefore, \[\text{BD = CD}\]                   (By \[\text{CPCT}\])

Hence, \[\text{AD}\] bisects \[\text{BC}\].

(ii) \[\mathbf{AD}\] bisects \[\mathbf{\angle \text{A}}\].

Ans: Also, \[\angle \text{BAD=}\angle \text{CAD}\]           (By \[\text{CPCT}\])

Hence, \[AD\] bisects \[BC\].

Therefore, \[AD\] bisects \[\angle A\].


3. Two sides \[\mathbf{\text{AB}}\] and \[\mathbf{\text{BC}}\] and median \[\mathbf{\text{AM}}\] of one triangle \[\mathbf{\text{ABC}}\] are respectively equal to sides \[\mathbf{\text{PQ}}\] and \[\mathbf{\text{QR}}\] and median \[\mathbf{\text{PN}}\] of \[\mathbf{\text{ }\!\!\Delta\!\!\text{ PQR}}\] (see the given figure). Show that:


seo images

(i) \[\mathbf{\text{ }\!\!\Delta\!\!\text{ ABM}\cong \text{ }\!\!\Delta\!\!\text{ PQN}}\]

Ans: In \[\text{ }\!\!\Delta\!\!\text{ ABC}\], \[\text{AM}\] is the median to \[\text{BC}\].

Therefore, \[\text{BM=}\frac{1}{2}BC\]

In \[\text{ }\!\!\Delta\!\!\text{ PQR}\], \[PN\] is the median to \[QR\].

Therefore, \[\text{QN=}\frac{1}{2}QR\]

However, \[\text{BC=QR}\]

So, \[\text{BM=QN}\]           โ€ฆโ€ฆ (i)

In \[\text{ }\!\!\Delta\!\!\text{ ABM}\] and \[\text{ }\!\!\Delta\!\!\text{ PQN}\],

\[\text{AB=PQ}\]                                      (Given)

\[\text{BM=QN}\]                                    (From (i))

\[\text{AM=PN}\]                                     (Given)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ ABM}\cong \text{ }\!\!\Delta\!\!\text{ PQN}\]       (By \[SSS\] congruence rule)

\[\angle ABM\text{=}\angle \text{PQN}\]                         (By \[\text{CPCT}\])

So, \[\angle ABC\text{=}\angle \text{PQR}\]              โ€ฆโ€ฆ (ii)

(ii) \[\mathbf{\text{ }\!\!\Delta\!\!\text{ ABC}\cong \text{ }\!\!\Delta\!\!\text{ PQR}}\]

Ans: In \[\text{ }\!\!\Delta\!\!\text{ ABC}\] and \[\text{ }\!\!\Delta\!\!\text{ PQR}\].

\[\text{AB=PQ}\]                                      (Given)

\[\angle ABC\text{=}\angle \text{PQR}\]                        (from (ii))

\[\text{BC=QR}\]                                   (Given)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ ABC}\cong \text{ }\!\!\Delta\!\!\text{ PQR}\]     (By \[SAS\] congruence rule)


4. \[\mathbf{BE}\] and \[\mathbf{CF}\] are two equal altitudes of a triangle \[\mathbf{ABC}\]. Using \[\mathbf{RHS}\] congruence rule, prove that the triangle \[\mathbf{ABC}\] is isosceles.


seo images

Ans: In \[\text{ }\!\!\Delta\!\!\text{ BEC}\] and \[\text{ }\!\!\Delta\!\!\text{ CFB}\],

\[\angle \text{BEC= }\angle \text{CFB}\]                           (Each \[\text{90 }\!\!{}^\text{o}\!\!\text{ }\])

\[\text{BC=CB}\]                                       (Common)

\[\text{BE= CF}\]                                       (Given)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ BEC}\cong \text{ }\!\!\Delta\!\!\text{ CFB}\]          (By \[RHS\] congruency)

Therefore, \[\angle \text{BCE=}\angle \text{CBF}\]           (By \[\text{CPCT}\])

Therefore, \[\text{AB=AC}\]                     (Sides opposite to equal angles of a triangle are equal)

Hence, \[\text{ }\!\!\Delta\!\!\text{ ABC}\] is isosceles.


5. \[\mathbf{ABC}\] is an isosceles triangle with \[\mathbf{\text{AB=AC}}\]. Draw \[\mathbf{\text{AP}\bot \text{BC}}\] to show that \[\mathbf{\angle \text{B=}\angle \text{C}}\].


seo images

Ans: In \[\text{ }\!\!\Delta\!\!\text{ APB}\] and \[\text{ }\!\!\Delta\!\!\text{ APC}\],

\[\angle \text{APB = }\angle \text{APC}\]                         (Each \[\text{90 }\!\!{}^\text{o}\!\!\text{ }\])

\[\text{AB=AC}\]                                      (Given)

\[\text{AP=AP}\]                                       (Common)

Therefore, \[\text{ }\!\!\Delta\!\!\text{ APB}\cong \text{ }\!\!\Delta\!\!\text{ APC}\]         (Using \[\text{RHS}\] congruence rule)

Therefore, \[\angle \text{B=}\angle \text{C}\]                    (By \[\text{CPCT}\])


Conclusion

In Class 9 Maths Chapter 7.3, we explored the various properties and theorems related to triangles. This exercise emphasized the application of the Angle Sum Property and the Exterior Angle Property of triangles. By solving the problems in 7.3 class 9 maths, we strengthened our understanding of how to find unknown angles and sides using these fundamental properties.


Class 9 Maths Chapter 7: Exercises Breakdown

Exercise

Number of Questions

Exercise 7.1

8 Questions & Solutions

Exercise 7.2

8 Questions & Solutions


CBSE Class 9 Maths Chapter 7 Other Study Materials


NCERT Solutions for Class 9 Maths - Chapter-wise PDF

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these  9th maths solutions chapter-wise to be thoroughly familiar with the concepts.



Important Study Materials for Class 9 Maths

WhatsApp Banner
Best Seller - Grade 11 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions For Class 9 Maths Chapter 7 Triangles Exercise 7.3 (2025-26)

1. Are Class 9 Maths Chapter 7 Exercise 7.3 NCERT Solutions enough to prepare for tests?

Yes, the Class 9 Maths Chapter 7 Exercise 7.3 NCERT Solutions on Vedantu include all textbook questions with step-by-step answers that support test preparation.

2. Do Class 9 Triangles Exercise 7.3 solutions help with homework assignments?

Yes, Class 9 Triangles Exercise 7.3 solutions on Vedantu are suitable for homework and written practice.

3. Are all exercise questions included in the Class 9 Maths Exercise 7.3 solutions?

Yes, all exercise questions from Class 9 Maths Exercise 7.3 are covered in the NCERT Solutions available on Vedantu.

4. Do the answers in Class 9 Maths Chapter 7 Exercise 7.3 follow the NCERT book order?

Yes, the Class 9 Maths Chapter 7 Exercise 7.3 answers on Vedantu follow the same question order as in the NCERT textbook.

5. Do Class 9 Maths Triangles Exercise 7.3 solutions show clear steps?

Yes, the Class 9 Maths Triangles Exercise 7.3 solutions on Vedantu include step-by-step approaches to help students understand the solving method.

6. Can private candidates use Class 9 Maths Exercise 7.3 solutions?

Yes, private candidates following the NCERT curriculum can use the Class 9 Maths Exercise 7.3 solutions available on Vedantu.

7. Are Class 9 Maths Chapter 7 Exercise 7.3 solutions aligned with the latest syllabus?

Yes, the Class 9 Maths Chapter 7 Exercise 7.3 solutions on Vedantu are aligned with the latest NCERT and CBSE syllabus.

8. Are the Class 9 Maths Triangles Exercise 7.3 answers easy to understand?

Yes, the Class 9 Maths Triangles Exercise 7.3 answers on Vedantu are written in simple and student-friendly language.

9. Are Class 9 Maths Exercise 7.3 solutions useful for revision before exams?

Yes, the Class 9 Maths Exercise 7.3 solutions on Vedantu are helpful for revision due to clear explanations and structured answers.