Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3

ffImage
banner

NCERT Solutions for Class 9 Maths Chapter 11 (Ex 11.3)

Free PDF download of NCERT Solutions for Class 9 Maths Chapter 11 Exercise 11.3 and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 9 Maths Chapter 11 Surface Areas and Volumes Exercise 11.3 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all NCERT Solution in your emails. You can also download Class 9 Maths to help you to revise the complete syllabus and score more marks in your examinations. Students can also avail of NCERT Solutions Class 9 Maths from our website.

toc-symbolTable of Content
toggle-arrow
Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3
Previous
Next
Vedantu 9&10
Subscribe
iconShare
Surface Area and Volume L-1 | Surface Area & Volume of Cuboid & Cube | CBSE 9 Maths Ch 13 | Term 2
5.2K likes
122.3K Views
3 years ago

Access NCERT solutions Class 9 Maths Chapter 11 - Surface Areas and Volumes

Exercise - 11.3

1. Find the volume of the right circular cone with

i. Radius $\text{6 cm}$, height $\text{7 cm}$

Ans:

It is given the radius of cone $\text{r = 6 cm}$

The height of the cone $\text{h = 7 cm}$

The volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  }{{\left( \text{6} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  7} \right]\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = }\left( \text{12  }\!\!\times\!\!\text{  22} \right)\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 264 c}{{\text{m}}^{\text{3}}}$

The volume of the right circular cone is $\text{264 c}{{\text{m}}^{\text{3}}}$.


ii. Radius $\text{3}\text{.5 cm}$, height $\text{12 cm}$ $\left[ \text{Assume  }\!\!\pi\!\!\text{  =}\frac{\text{22}}{\text{7}} \right]$

Ans:

It is given the radius of cone $\text{r = 3}\text{.5 cm}$

The height of the cone $\text{h = 12 cm}$

The volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  }{{\left( \text{3}\text{.5} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  12} \right]\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = }\left( \text{1}\text{.75  }\!\!\times\!\!\text{  88} \right)\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 154 c}{{\text{m}}^{\text{3}}}$

The volume of the right circular cone is $\text{154 c}{{\text{m}}^{\text{3}}}$.


2. Find the capacity in litres of a conical vessel with

i. Radius $\text{7 cm}$, slant height $\text{25 cm}$

Ans:

It is given the radius of cone $\text{r = 7 cm}$

The slant height of the cone $\text{l = 25 cm}$

So, the height of the cone $\text{h = }\sqrt{{{\text{l}}^{\text{2}}}\text{ - }{{\text{r}}^{\text{2}}}}$

$\Rightarrow \text{h = }\sqrt{\text{2}{{\text{5}}^{\text{2}}}\text{ - }{{\text{7}}^{\text{2}}}}\text{ cm}$

$\Rightarrow \text{h = 24 cm}$

The volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  }{{\left( \text{7} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  24} \right]\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = }\left( \text{154  }\!\!\times\!\!\text{  8} \right)\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 1232 c}{{\text{m}}^{\text{3}}}$

We know that $\text{1000 c}{{\text{m}}^{\text{3}}}\text{ = 1 litre}$

So, the capacity of the conical vessel $\text{= }\frac{\text{1232}}{\text{1000}}\text{ = 1}\text{.232 litres}$

Therefore, the capacity of the conical vessel is $\text{1}\text{.232 litres}$.


ii. Height $\text{12 cm}$, slant height $\text{13 cm}$ $\left[ \text{Assume  }\!\!\pi\!\!\text{  =}\frac{\text{22}}{\text{7}} \right]$

Ans:

It is given the height of cone $\text{h = 12 cm}$

The slant height of the cone $\text{l = 13 cm}$

So, the radius of the cone $\text{r = }\sqrt{{{\text{l}}^{\text{2}}}\text{ - }{{\text{h}}^{\text{2}}}}$

$\Rightarrow \text{r = }\sqrt{\text{1}{{\text{3}}^{\text{2}}}\text{ - 1}{{\text{2}}^{\text{2}}}}\text{ cm}$

$\Rightarrow \text{r = 5 cm}$

The volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  }{{\left( \text{5} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  12} \right]\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = }\left( \text{4  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  25} \right)\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = }\frac{2200}{7}\text{ c}{{\text{m}}^{\text{3}}}$

We know that $\text{1000 c}{{\text{m}}^{\text{3}}}\text{ = 1 litre}$

So, the capacity of the conical vessel $\text{= }\frac{\text{2200}}{\text{7}}\text{  }\!\!\times\!\!\text{  }\frac{\text{1}}{\text{1000}}\text{ = 0}\text{.314 litres}$

Therefore, the capacity of the conical vessel is $\text{0}\text{.314 litres}$.


3. The height of a cone is $\text{15 cm}$. It its volume is $\text{1570 c}{{\text{m}}^{\text{3}}}$, find the diameter of its base. $\left[ \text{Use  }\!\!\pi\!\!\text{  = 3}\text{.14} \right]$

Ans:

It is given the height of cone $\text{h = 12 cm}$

Let us assume the radius of the cone be $\text{r}$.

The volume of the cone is $\text{V = 1570 c}{{\text{m}}^{\text{3}}}$

We know the formula for the volume of the cone $\text{= }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\therefore \frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h = 1570 c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  }{{\left( \text{r} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  12} \right]\text{ cm = 1570 c}{{\text{m}}^{\text{3}}}$

$\Rightarrow {{\text{r}}^{\text{2}}}\text{ = 100 c}{{\text{m}}^{\text{2}}}$

\[\Rightarrow \text{r = 10 cm}\]

Diameter of base \[\text{= 2r = 20 cm}\]

Therefore, the diameter of the cone is  \[\text{20 cm}\].


4. If the volume of right circular cone of height $\text{9 cm}$ is $\text{48 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$, find the diameter of its base.

Ans:

It is given the height of cone $\text{h = 9 cm}$

Let us assume the radius of the cone is $\text{r}$.

The volume of the cone is $\text{V = 48 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$

We know the formula for the volume of the cone $\text{= }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\therefore \frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h = 48 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{   }\!\!\pi\!\!\text{   }\!\!\times\!\!\text{  }{{\left( \text{r} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  9} \right]\text{ cm = 48 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$

$\Rightarrow {{\text{r}}^{\text{2}}}\text{ = 16 c}{{\text{m}}^{\text{2}}}$

\[\Rightarrow \text{r = 4 cm}\]

Diameter of base \[\text{= 2r = 8 cm}\]

Therefore, the diameter of the base of the cone is \[\text{8 cm}\].


5. A conical pit of top diameter $\text{3}\text{.5 m}$ is $\text{12 m}$ deep. What is the capacity in kilolitres? $\left[ \text{Assume  }\!\!\pi\!\!\text{  =}\frac{\text{22}}{\text{7}} \right]$

Ans:

It is given the height of conical pit $\text{h = 12 m}$

The radius of conical pit $\text{r = }\frac{\text{3}\text{.5}}{\text{2}}\text{ m = 1}\text{.75 m}$

We know the volume of the conical pit $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  }{{\left( \text{1}\text{.75} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  12} \right]\text{ }{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 38}\text{.5 }{{\text{m}}^{\text{3}}}$

We know that $\text{1 kilolitre = 1 }{{\text{m}}^{\text{3}}}$

So, the capacity of the pit $\text{= }\left( \text{38}\text{.5  }\!\!\times\!\!\text{  1} \right)\text{ kilolitres = 38}\text{.5 kilolitres}$

Therefore, the capacity of the conical pit is $\text{38}\text{.5 kilolitres}$.


6. The volume of a right circular cone is $\text{9856 c}{{\text{m}}^{\text{3}}}$. If the diameter of the base is $\text{28 cm}$, find

i. Height of the cone

Ans:

It is given the diameter of base of cone $\text{= 28 cm}$

So, the radius $\text{r = }\frac{\text{28}}{\text{2}}\text{ = 14 cm}$

Let us assume the height of the cone is $\text{h}$.

The volume of the cone is $\text{V = 9856 c}{{\text{m}}^{\text{3}}}$

We know the formula for the volume of the cone $\text{= }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\therefore \frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h = 9856 c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{22}{7}\text{  }\!\!\times\!\!\text{  }{{\left( \text{14} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  h} \right]\text{ c}{{\text{m}}^{\text{2}}}\text{ = 9856 c}{{\text{m}}^{\text{3}}}$

\[\Rightarrow \text{h = }\left( \frac{\text{9856  }\!\!\times\!\!\text{  21}}{\text{22  }\!\!\times\!\!\text{  196}} \right)\text{ cm}\]

\[\Rightarrow \text{h = 48 cm}\]

Therefore, the height of the cone is \[\text{48 cm}\].


ii. Slant height of the cone

Ans:

The slant height of the cone $\text{l = }\sqrt{{{\text{h}}^{\text{2}}}\text{ + }{{\text{r}}^{\text{2}}}}$

$\Rightarrow \text{l = }\sqrt{\text{4}{{\text{8}}^{\text{2}}}\text{ + 1}{{\text{4}}^{\text{2}}}}\text{ cm}$

$\Rightarrow \text{l = }\sqrt{\text{2304 + 196}}\text{ cm}$

$\Rightarrow \text{l = 50 cm}$

Therefore, the slant height of the cone is $\text{50 cm}$.


iii. Curved surface area of the cone. $\left[ \text{Assume  }\!\!\pi\!\!\text{  =}\frac{\text{22}}{\text{7}} \right]$

Ans:

The curved surface area of the cone $\text{A =  }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A = }\left( \frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  14  }\!\!\times\!\!\text{  50} \right)\text{ c}{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 2200 c}{{\text{m}}^{\text{2}}}$

Therefore, the curved surface area of the cone is $\text{2200 c}{{\text{m}}^{\text{2}}}$.


7. A right triangle $\text{ }\!\!\Delta\!\!\text{ ABC}$ with sides $\text{5 cm}$,$\text{12 cm}$ and \[\text{13 cm}\] is revolved about the side $\text{12 cm}$. Find the volume of the solid so obtained.

Ans:


(Image will be uploaded soon)


If the triangle is revolved about the side $\text{12 cm}$, we will get a cone with:

Radius $\text{r = 5 cm}$

Slant height $\text{l = 13 cm}$

Height $\text{h = 12 cm}$

We know the volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{   }\!\!\pi\!\!\text{   }\!\!\times\!\!\text{  }{{\left( \text{5} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  12} \right]\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 100 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$

Therefore, the volume of the cone will be $\text{100 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$.


8. If the triangle $\text{ }\!\!\Delta\!\!\text{ ABC}$ in the Question $\text{7}$ above is revolved about the side $\text{5 cm}$, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Questions $\text{7}$ and $\text{8}$.

Ans:


(Image will be uploaded soon)


If the triangle is revolved about the side $\text{5 cm}$, we will get a cone with:

Radius $\text{r = 12 cm}$

Slant height $\text{l = 13 cm}$

Height $\text{h = 5 cm}$

We know the volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{   }\!\!\pi\!\!\text{   }\!\!\times\!\!\text{  }{{\left( \text{12} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  5} \right]\text{ c}{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 240 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$

Therefore, the volume of the cone will be $\text{240 }\!\!\pi\!\!\text{  c}{{\text{m}}^{\text{3}}}$.

The ratio of volume of cone from previous question an the one we obtained above $\text{= }\frac{\text{100 }\!\!\pi\!\!\text{ }}{\text{240 }\!\!\pi\!\!\text{ }}\text{ = }\frac{\text{5}}{\text{12}}\text{ = 5 : 12}$

Therefore, the required ratio is $\text{5 : 12}$.


9. A heap of wheat is in the form of a cone whose diameter is $\text{10}\text{.5 m}$and height is $\text{3 m}$. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.

$\left[ \text{Assume  }\!\!\pi\!\!\text{  =}\frac{\text{22}}{\text{7}} \right]$

Ans:

It is given that diameter of the heap $\text{= 10}\text{.5 m}$

So, the radius of heap $\text{r = }\frac{\text{10}\text{.5}}{\text{2}}\text{ = 5}\text{.25 m}$

Height of heap $\text{h = 3 m}$

We know the volume of the cone $\text{V = }\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{2}}}\text{h}$

$\Rightarrow \text{V = }\left[ \frac{\text{1}}{\text{3}}\text{  }\!\!\times\!\!\text{  }\frac{22}{7}\text{  }\!\!\times\!\!\text{  }{{\left( \text{5}\text{.25} \right)}^{\text{2}}}\text{  }\!\!\times\!\!\text{  3} \right]\text{ }{{\text{m}}^{\text{3}}}$

$\Rightarrow \text{V = 86}\text{.625 }{{\text{m}}^{\text{3}}}$

Hence, the volume of the heap is $\text{86}\text{.625 }{{\text{m}}^{\text{3}}}$.

The area of canvas required is the same as the curved surface area of the cone.

$\therefore \text{A =  }\!\!\pi\!\!\text{ rl}$

$\Rightarrow \text{A =  }\!\!\pi\!\!\text{ r}\sqrt{{{\text{h}}^{\text{2}}}\text{ + }{{\text{r}}^{\text{2}}}}$

$\Rightarrow \text{A = }\frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  5}\text{.25  }\!\!\times\!\!\text{  }\sqrt{{{\left( \text{3} \right)}^{\text{2}}}\text{ + }{{\left( \text{5}\text{.25} \right)}^{\text{2}}}}\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = }\left( \frac{\text{22}}{\text{7}}\text{  }\!\!\times\!\!\text{  5}\text{.25  }\!\!\times\!\!\text{  6}\text{.05} \right)\text{ }{{\text{m}}^{\text{2}}}$

$\Rightarrow \text{A = 99}\text{.825 }{{\text{m}}^{\text{2}}}$

Therefore, to protect the heap from the rain, the amount of canvas required is $\text{99}\text{.825 }{{\text{m}}^{\text{2}}}$.


NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas and Volumes Exercise 11.3

Important Topics Covered in Exercise 11.3 of Class 9 Maths NCERT Solutions 

Surface areas and volumes are very important concepts in the study of geometry. Exercise 11.3 of Class 9 Maths NCERT Solutions is mainly based on the concept of deriving the formula of the volume of a right circular cone. Volume of a right circular cone is one third of the volume of the cylinder. One most popular example of a right circular cone is the caps that the Kids wear on their birthdays.

Below is the formula for the volume of a cone which is discussed in this exercise.

  • Volume of a Cone = (1/3 )πr2h

This exercise consists of questions based on finding the volume of a cone. By practising the solutions provided in this exercise, students will have a better understanding of the concepts and it will also help them to build a solid base for the advanced Maths topics.


Opting for the NCERT solutions for Ex 11.3 Class 9 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 11.3 Class 9 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.


Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 9 students who are thorough with all the concepts from the Subject Surface Areas and Volumes textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 9 Maths Chapter 11 Exercise 11.3 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.


Besides these NCERT solutions for Class 9 Maths Chapter 11 Exercise 11.3, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.


Do not delay any more. Download the NCERT solutions for Class 9 Maths Chapter 11 Exercise 11.3 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.


Class 9 Maths Chapter 11: Exercises Breakdown

Exercise

Number of Questions

Exercise 11.1

8 Questions & Solutions

Exercise 11.2

9 Questions & Solutions


CBSE Class 9 Maths Chapter 11 Other Study Materials


Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for Class 9 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3

1. What is the formula for finding the volume of a right circular cone in Class 9 Maths Chapter 11 NCERT Solutions?

The volume of a right circular cone is found using the formula: V = (1/3)πr2h, where r is the radius of the base and h is the height of the cone. This formula is a key concept in the NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas and Volumes as per the CBSE 2025–26 curriculum.

2. How do you calculate the curved surface area of a cone according to NCERT Solutions for Class 9 Maths Chapter 11?

The curved surface area (CSA) of a cone is calculated with the formula: CSA = πrl, where r is the radius and l is the slant height. Understanding this method is essential for solving problems in Class 9 Maths Chapter 11 (Surface Areas and Volumes).

3. If the height and diameter of a cone are given, how can the volume be calculated as per NCERT guidelines?

To find the volume of a cone when the height (h) and diameter (d) are known, use the formula: V = (1/3)π (d/2)2 h. First, calculate the radius as r = d/2, then substitute in the volume formula.

4. What steps should students follow to solve Class 9 Maths Chapter 11 Surface Areas and Volumes Exercise 11.3 questions as per CBSE pattern?

Students should:

  • Read each question carefully to identify given values (radius, height, slant height, etc.).
  • Determine the required formula (volume or surface area).
  • Substitute given values with correct units into the formula.
  • Show all calculation steps clearly, as per NCERT/CBSE norms.
  • State the final answer with the correct unit (cm³, m², litres, etc.).

5. In Chapter 11 Exercise 11.3, what is the difference between total surface area and curved surface area of a cone?

Curved surface area is just the slanted, lateral surface excluding the base, given by πrl. Total surface area includes both the curved surface and the base’s area: πrl + πr2 = πr(l + r).

6. Why is the volume of a cone exactly one third the volume of a cylinder with the same base and height? (Conceptual FUQ)

The volume of a cone is one third the volume of a cylinder because, for the same base area and height, a cone occupies less space. If you fill a cylinder with three identical cones of the same dimensions, all the space will be used, demonstrating the 1/3 ratio.

7. What are common mistakes to avoid when solving NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volumes Exercise 11.3?

Common mistakes include:

  • Not converting diameter to radius.
  • Mixing up slant height and vertical height.
  • Using incorrect units (e.g., cm instead of cm² or cm³).
  • Forgetting to use π = 22/7 or 3.14 as instructed in the question.
Careful reading and step-by-step solutions help avoid errors.

8. How can understanding the properties of a cone help solve real-world problems, as taught in Class 9 Maths Chapter 11?

Understanding cone properties lets students calculate objects’ capacities (like conical vessels or heaps), canvas needed for covering piles, or optimize packaging—all of which are practical applications covered in the CBSE 2025–26 syllabus.

9. What should be written as the unit of the answer for questions based on volume in NCERT Solutions for Class 9 Maths Chapter 11?

Always use cubic units for volume answers, such as cm³, m³, or litres (where 1,000 cm³ = 1 litre; 1 m³ = 1 kilolitre) as per the context of the question.

10. How can Vedantu’s NCERT Solutions for Class 9 Maths Chapter 11 Exercise 11.3 improve exam performance?

Vedantu’s NCERT Solutions provide step-by-step explanations, present correct CBSE pattern methods, and clarify formula application, enabling students to develop strong problem-solving skills and score higher in final exams for Class 9 Maths Chapter 11 Surface Areas and Volumes.

11. What formulas from NCERT Class 9 Maths Chapter 11 Exercise 11.3 should every student memorize for the exams?

Key formulas to memorize include:

  • Volume of cone: V = (1/3)πr2h
  • Curved surface area: CSA = πrl
  • Total surface area: TSA = πr(l + r)
Ensure correct understanding of each variable.

12. Where can students clarify concepts or doubts from NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas and Volumes?

Students can use official Vedantu online sessions, discussion forums, or ask teachers for guidance. The NCERT Solutions offer stepwise methods, which help clarify each concept aligned to Chapter 11 of the latest CBSE 2025–26 syllabus.

13. What should be done if a question in Surface Areas and Volumes Exercise 11.3 asks for volume in litres but the answer is obtained in cm³?

Convert cm³ to litres by dividing by 1,000. For example, 2,000 cm³ = 2 litres. Always write the final answer with the correct unit as required by the question.

14. How does mastering Chapter 11 Exercise 11.3 help in higher classes' maths or competitive exams? (FUQ)

Mastering cones’ surface area and volume builds geometric visualization, unit conversions, and multi-step calculation skills, which are essential for advanced geometry questions in higher classes, engineering, architecture, and competitive exams.

15. If only the slant height and radius are given, how do you find the vertical height of a cone in Class 9 Maths Chapter 11?

Use the Pythagoras theorem: h = √(l² - r²), where l is the slant height and r is the radius. This gives the vertical height needed for further calculations (e.g., volume).