Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Mathematics Chapter 7 Integrals – NCERT Solutions Exercise 7.6 [2025-26]

ffImage
banner

Download Free PDF of Integrals Exercise 7.6 Solutions for Class 12 Maths

Mastering NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.6 is a powerful step for your CBSE board preparation. This chapter focuses on integrals, where integration by substitution and trigonometric identities help you solve otherwise challenging problems. With a weightage of 9 marks in board exams, understanding these methods can improve your score and boost your exam confidence.

toc-symbolTable of Content
toggle-arrow

Every solution here guides you through standard integrals, stepwise methods, and rational function integration — making even tricky integrals 7.6 questions less daunting. If you’ve searched for “class 12 maths ex 7.6” or want help solving application-based integrals fast, you are in the right place. These explanations align seamlessly with the Class 12 Mathematics syllabus for the latest board exams.


Trust Vedantu to support your revision with clear, board-aligned steps and reliable strategies. For a holistic view, review the Class 12 Maths syllabus anytime during your preparation.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 7 Maths Chapter 12 - Integrals Exercise 7.6

1. $x\sin x$

Ans:  Let $I=\int{x}\sin xdx$

Consider $\text{u}=\text{x}$ and $\text{v}=\sin \text{x}$and integrating by parts, to obtain  

$I=\int{x}\sin xdx-\int{\left\{ \left( \dfrac{d}{dx}x \right)\int{\sin }xdx \right\}}dx$

$=x(-\cos x)-\int{1}.(-\cos x)dx$

$=-x\cos x+\sin x+C$


2. $x\sin 3x$

Ans: Let $\text{I}=\int{x}\sin 3xdx$

Consider $\text{u}=\text{x}$ and $\text{v}=\sin 3\text{x}$ and integrating by parts, to obtain  

$I=x\int{\sin }3xdx-\int{\left\{ \left( \dfrac{d}{dx}x \right)\int{\sin }3xdx \right\}}$

$=x\left( \dfrac{-\cos 3x}{3} \right)-\int{1}\cdot \left( \dfrac{-\cos 3x}{3} \right)dx$

$=\dfrac{-x\cos 3x}{3}+\dfrac{1}{3}\int{\cos }3xdx=\dfrac{-x\cos 3x}{3}+\dfrac{1}{9}\sin 3x+C$


3. ${{x}^{2}}{{e}^{x}}$

Ans:  Let $I=\int{{{x}^{2}}}{{e}^{x}}dx$

Consider  $\text{u}={{\text{x}}^{2}}\,\,and\,\,\text{v}={{\text{e}}^{x}}$

$I={{x}^{2}}\int{{{e}^{x}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{x}^{2}} \right)\int{{{e}^{x}}}dx \right\}}dx$

$={{x}^{2}}{{e}^{x}}-\int{2}x-{{e}^{x}}dx$

$={{x}^{2}}{{e}^{x}}-2\int{x}\cdot {{e}^{x}}dx$

Again using integration by parts, to obtain

$={{x}^{2}}{{e}^{x}}-2\left[ x\cdot \int{{{e}^{x}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{x}^{2}} \right)\int{{{e}^{x}}}dx \right\}}dx \right]$

$={{x}^{2}}{{e}^{x}}-2\left[ x{{e}^{x}}-\int{{{e}^{x}}}dx \right]$

Simplifying,

$={{x}^{2}}{{e}^{x}}-2\left[ x{{e}^{x}}-{{e}^{x}} \right]$

$={{x}^{2}}{{e}^{x}}-2x{{e}^{x}}+2{{e}^{x}}+C$

$={{e}^{x}}\left( {{x}^{2}}-2x+2 \right)+C$


4. $x\log x$

Ans:  Let $I=\int{x}\log xdx$

Consider $\text{u}=\log \text{x}\,\,\,\,and\,\,\,\text{v}=\text{x}$ and integrating by parts, to obtain

$I=\log x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{x}dx \right\}}dx$

$=\log x\cdot \dfrac{{{x}^{2}}}{2}-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{2}}}{2}dx$

$=\dfrac{{{x}^{2}}\log x}{2}\cdot \sqrt{\dfrac{x}{2}}dx=\dfrac{{{x}^{2}}\log x}{2}-\dfrac{{{x}^{2}}}{4}+C$


5. $x\log 2x$

Ans:  Let $I=\int{x}\log 2xdx$

Consider $u=\log 2x$ and $v=x$and integrating by parts, to obtain

$I=\log 2x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}2\log x \right)\int{x}dx \right\}}dx$

$=\log 2x\cdot \dfrac{{{x}^{2}}}{2}-\int{\dfrac{2}{2x}}\cdot \dfrac{{{x}^{2}}}{2}dx$

$=\dfrac{{{x}^{2}}\log 2x}{2}-\int{\dfrac{x}{2}}dx$

Integrating using the power rule

$=\dfrac{{{x}^{2}}\log 2x}{2}-\dfrac{{{x}^{2}}}{4}+C$


6. ${{x}^{2}}\log x$

Ans: Let $I=\int{{{x}^{2}}}\log xdx$

Consider $u=\log x$and $v={{x}^{2}}$ and integrating by parts, to obtain

$I=\log x\int{{{x}^{2}}}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{{{x}^{2}}}dx \right\}}dx$

$=\log x\left( \dfrac{{{x}^{3}}}{3} \right)-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{3}}}{3}dx$

Integrating using the power rule

$=\dfrac{{{x}^{3}}\log x}{3}-\int{\dfrac{{{x}^{2}}}{3}}dx=\dfrac{{{x}^{3}}\log x}{3}-\dfrac{{{x}^{3}}}{9}+C$


7. $x{{\sin }^{-1}}x$

Ans: Let $I=\int{x}{{\sin }^{-1}}xdx$

Consider $u={{\sin }^{-1}}x\,\,and\,\,\,v=x$ and integrating by parts, to obtain

$I={{\sin }^{-1}}x\int{x}dx\int{\left\{ \left( \dfrac{d}{dx}{{\sin }^{-1}}x \right)\int{x}dx \right\}}dx$

$={{\sin }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}}\cdot \dfrac{{{x}^{2}}}{2}dx$

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\int{\dfrac{-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}}dx$

Adding and subtracting by 1

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\int{\left\{ \dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}-\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right\}}dx$

Simplifying,

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\int{\left\{ \sqrt{1-{{x}^{2}}}-\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right\}}dx$

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\left\{ \int{\sqrt{1-{{x}^{2}}}}dx-\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}}dx \right\}$

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\left\{ \dfrac{x}{2}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin }^{-1}}x-{{\sin }^{-1}}x \right\}+C$

Simplifying,      $=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{x}{4}\sqrt{1-{{x}^{2}}}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C=\dfrac{1}{4}\left( 2{{x}^{2}}-1 \right){{\operatorname{in}}^{-1}}x+\dfrac{x}{4}\sqrt{1-{{x}^{2}}}+C$


8. $x{{\tan }^{-1}}x$

Ans: Let $I=\int{x}{{\tan }^{-1}}xdx$

Consider $\text{u}={{\tan }^{-1}}\text{x}$ and $\text{v}=\text{x}$and integrating by parts, to obtain

$I={{\tan }^{-1}}x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\tan }^{-1}}x \right)\int{x}dx \right\}}dx$

$={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)\int{\dfrac{1}{1+{{x}^{2}}}}\cdot \dfrac{{{x}^{2}}}{2}dx=\dfrac{{{x}^{2}}{{\tan }^{-1}}x}{2}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{1+{{x}^{2}}}}dx$

Adding and subtracting by -1

$=\dfrac{{{x}^{2}}{{\tan }^{-1}}x}{2}-\dfrac{1}{2}\int{\left( \dfrac{{{x}^{2}}+1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}} \right)}dx=\dfrac{{{x}^{2}}{{\tan }^{-1}}x}{2}-\dfrac{1}{2}\int{\left( 1-\dfrac{1}{1+{{x}^{2}}} \right)}dx$

Simplifying,

$=\dfrac{{{x}^{2}}{{\operatorname{lan}}^{-1}}x}{2}-\dfrac{1}{2}\left( x-{{\tan }^{-1}}x \right)+C=\dfrac{{{x}^{2}}}{2}{{\tan }^{-1}}x-\dfrac{x}{2}+\dfrac{1}{2}{{\tan }^{-1}}x+C$


9. $x{{\cos }^{-1}}x$

Ans: Let $I=\int{x}{{\cos }^{-1}}xdx$

Taking $u={{\cos }^{-1}}x$ and $\text{v}=\text{x}$and integrating by parts, to obtain

$I={{\cos }^{-1}}x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\cos }^{-1}}x \right)\int{x}dx \right\}}dx$

$={{\cos }^{-1}}x\dfrac{{{x}^{2}}}{2}-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}}\cdot \dfrac{{{x}^{2}}}{2}dx$

Adding and subtracting by -1

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}}dx$

Simplifying,

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\int{\left\{ \sqrt{1-{{x}^{2}}}+\left( \dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right) \right\}}dx$

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\int{\sqrt{1-{{x}^{2}}}}dx-\dfrac{1}{2}\int{\left( \dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right)}dx$

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}{{I}_{1}}-\dfrac{1}{2}{{\cos }^{-1}}x....\left( 1 \right)$

Where ${{I}_{1}}=\int{\sqrt{1-{{x}^{2}}}}dx$

$\Rightarrow {{I}_{1}}=x\int{\sqrt{1-{{x}^{2}}}}-\int{\dfrac{d}{dx}}\sqrt{1-{{x}^{2}}}\int{x}dx\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\int{\dfrac{-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}}dx$

$\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}}dx\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\left\{ \int{\sqrt{1-{{x}^{2}}}}dx+\int{\dfrac{-dx}{\sqrt{1-{{x}^{2}}}}} \right\}$

$\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\left\{ {{I}_{1}}+{{\cos }^{-1}}x \right\}\Rightarrow 2{{I}_{1}}=x\sqrt{1-{{x}^{2}}}-{{\cos }^{-1}}x$

$\therefore {{I}_{1}}=\dfrac{x}{2}\sqrt{1-{{x}^{2}}}-\dfrac{1}{2}{{\cos }^{-1}}x$

Substituting in (1), we get

$I=\dfrac{x{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\left( \dfrac{x}{2}\sqrt{1-{{x}^{2}}}-\dfrac{1}{2}{{\cos }^{-1}}x \right)-\dfrac{1}{2}{{\cos }^{-1}}x$

Simplifying,

$=\dfrac{\left( 2{{x}^{2}}-1 \right)}{4}{{\cos }^{-1}}x-\dfrac{x}{4}\sqrt{1-{{x}^{2}}}+C$


10. ${{\left( {{\sin }^{-1}}x \right)}^{2}}$

Ans: Let $I=\int{{{\left( {{\sin }^{-1}}x \right)}^{2}}}\cdot 1dx$

Consider $\text{u}={{\left( {{\sin }^{-1}}\text{x} \right)}^{2}}$ and $\text{v}=1$and integrating by parts, to obtain

$I=\int{\left( {{\sin }^{-1}}x \right)}\cdot \int{1}dx-\int{\left\{ \dfrac{d}{dx}{{\left( {{\sin }^{-1}}x \right)}^{2}}\cdot \int{1}.dx \right\}}dx$

$={{\left( {{\sin }^{-1}}x \right)}^{2}}x-\int{\dfrac{2{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}\cdot xdx$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\int{{{\sin }^{-1}}}x\cdot \left( \dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right)dx$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ {{\sin }^{-1}}x\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\sin }^{-1}}x \right)\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx \right\}}dx \right]$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ {{\sin }^{-1}}x\cdot 2\sqrt{1-{{x}^{2}}}-\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}}\cdot 2\sqrt{1-{{x}^{2}}}dx \right]$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-\int{2}dx$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-2x+C$


11. $\dfrac{x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}$

Ans:  Let $I=\int{\dfrac{x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}dx$

Multiplying and dividing by 2

$I=\dfrac{-1}{2}\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}\cdot {{\cos }^{-1}}xdx$

Consider  $\text{u}={{\cos }^{-1}}\text{x}$ and $\text{v}=\left( \dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right)$and integrating by parts, to obtain

$I=\dfrac{-1}{2}\left[ {{\cos }^{-1}}x\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\cos }^{-1}}x \right)\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx \right\}}dx \right]$

$=\dfrac{-1}{2}\left[ {{\cos }^{-1}}x\cdot 2\sqrt{1-{{x}^{2}}}-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}}\cdot 2\sqrt{1-{{x}^{2}}}dx \right]=\dfrac{-1}{2}\left[ 2\sqrt{1-{{x}^{2}}}{{\cos }^{-1}}x+\int{2}dx \right]$

Simplifying,

$=\dfrac{-1}{2}\left[ 2\sqrt{1-{{x}^{2}}}{{\cos }^{-1}}x+2x \right]+C$

$=-\left[ \sqrt{1-{{x}^{2}}}{{\cos }^{-1}}x+x \right]+C$


12. $x{{\sec }^{2}}x$

Ans: Let $I=\int{x}{{\sec }^{2}}xdx$

Consider$\text{u}=\text{x}$ and $\text{v}={{\sec }^{2}}\text{x}$ and integrating by parts, to obtain

$I=x\int{{{\sec }^{2}}}xdx-\int{\left\{ \left\{ \dfrac{d}{dx}x \right\}\int{{{\sec }^{2}}}xdx \right\}}dx$

$=x\tan x-\int{1}\cdot \tan xdx$

$=x\tan x+\log |\cos x|+C$


13. ${{\tan }^{-1}}x$

Ans: Let $I=\int{1}\cdot {{\tan }^{-1}}xdx$

Consider $\text{u}={{\tan }^{-1}}\text{x}$ and $\text{v}=1$ and integrating by parts, to obtain

$I={{\tan }^{-1}}x\int{1}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\tan }^{-1}}x \right)\int{1}.dx \right\}}dx={{\tan }^{-1}}xx-\int{\dfrac{1}{1+{{x}^{2}}}}xd$

$=x{{\tan }^{-1}}x-\dfrac{1}{2}\int{\dfrac{2x}{1+{{x}^{2}}}}dx$

$=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+C$ 

$=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+C$


14. $x{{\left( \log x \right)}^{2}}dx$

Ans:  $I=\int{x}{{(\log x)}^{2}}dx$

Consider$u={{(\log x)}^{2}}$ and $v=1$ and integrating by parts, to obtain

$I={{(\log )}^{2}}\int{x}dx-\int{\left[ \left\{ {{\left( \dfrac{d}{dx}\log x \right)}^{2}} \right\}\int{x}dx \right]}dx$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\left[ \int{2}\log x\cdot \dfrac{1}{x}\cdot \dfrac{{{x}^{2}}}{2}dx \right]$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\int{x}\log xdx$

Again using integration by parts, to obtain

$I=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\left[ \log x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{x}dx \right\}}dx \right]$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\left[ \dfrac{{{x}^{2}}}{2}-\log x-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{2}}}{2}dx \right]$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\dfrac{{{x}^{2}}}{2}\log x+\dfrac{1}{2}\int{x}dx=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\dfrac{{{x}^{2}}}{2}\log x+\dfrac{{{x}^{2}}}{4}+C$


15. $\left( {{x}^{2}}+1 \right)\log x$

Ans: Let $I=\int{\left( {{x}^{2}}+1 \right)}\log xdx=\int{{{x}^{2}}}\log xdx+\int{\log }xdx$

Let $\text{I}={{\text{I}}_{1}}+{{\text{I}}_{2}}\ldots (1)$

Where,${{I}_{1}}=\int{{{x}^{2}}}\log xdx\,\,\,\,\,\,and\,\,\,{{\text{I}}_{2}}=\int{\log }xdx$

${{I}_{1}}=\int{{{x}^{2}}}\log xdx$ 

Consider$\text{u}=\log \text{x}$ and $v=x^2$ and integrating by parts, to obtain

${{I}_{1}}=\log x-\int{{{x}^{2}}}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{{{x}^{2}}}dx \right\}}dx$

$=\log x\cdot \dfrac{{{x}^{3}}}{3}-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{3}}}{3}dx=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{1}{3}\int{{{x}^{2}}}dx$

$=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{{{x}^{3}}}{9}+{{C}_{1}}\quad \ldots (2)$

${{I}_{2}}=\int{\log }xdx$

Consider $\text{u}=\log \text{x}$ and $\text{v}=1$and integrating by parts, to obtain

${{I}_{2}}=\log x\int{1}.dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{1}.dx \right\}}$

$=\log x\cdot x-\int{\dfrac{1}{x}}xdx$

$=x\log x-x..\left( 3 \right)$

Using equations (2) and (3) in (1), we get

$I=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{{{x}^{3}}}{9}+{{C}_{1}}+x\log x-x+{{C}_{2}}$

$=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{{{x}^{3}}}{9}+x\log x-x+\left( {{C}_{1}}+{{C}_{2}} \right)$

$=\left( \dfrac{{{x}^{3}}}{3}+x \right)\log x-\dfrac{{{x}^{3}}}{9}-x+C$


16. ${{e}^{x}}\left( \sin x+\cos x \right)$

Ans: Consider$I=\int{{{e}^{x}}}(\sin x+\cos x)dx$

Consider$f(x)=\sin x$

${{f}^{\prime }}(x)=\cos x$

$I=\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx$

Since, $\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx={{e}^{x}}f(x)+C$

$\therefore I={{e}^{x}}\sin x+C$


17. $\dfrac{x{{e}^{x}}}{{{\left( 1+x \right)}^{2}}}$

Ans:  Consider $I=\int{\dfrac{x{{e}^{x}}}{{{(1+x)}^{2}}}}dx=\int{{{e}^{x}}}\left\{ \dfrac{x}{{{(1+x)}^{2}}} \right\}dx$

$=\int{{{e}^{x}}}\left\{ \dfrac{1+x-1}{{{(1+x)}^{2}}} \right\}dx=\int{{{e}^{x}}}\left\{ \dfrac{1}{1+x}-\dfrac{1}{{{(1+x)}^{2}}} \right\}dx$

Here, $f(x)=\dfrac{1}{1+x}\quad {{f}^{\prime }}(x)=\dfrac{-1}{{{(1+x)}^{2}}}$

$\Rightarrow \int{\dfrac{x{{e}^{x}}}{{{(1+x)}^{2}}}}dx=\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx$

Since, $\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx={{e}^{x}}f(x)+C$

$\therefore \int{\dfrac{x{{e}^{x}}}{{{(1+x)}^{2}}}}dx=\dfrac{{{e}^{x}}}{1+x}+C$


18. Integrate the function - ${{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)$

Ans: First simplify –${{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)$

It is known that – 

$1+\sin x={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

$1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$

$\therefore {{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)={{e}^{x}}\left( \dfrac{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}} \right)$

$={{e}^{x}}\left( \dfrac{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}{2{{\cos }^{2}}\dfrac{x}{2}} \right)$

$=\dfrac{1}{2}{{e}^{x}}\left( \dfrac{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}{{{\cos }^{2}}\dfrac{x}{2}} \right)$

$=\dfrac{1}{2}{{e}^{x}}{{\left( \dfrac{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}$

$=\dfrac{1}{2}{{e}^{x}}{{\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}$

$=\dfrac{1}{2}{{e}^{x}}{{\left( \tan \dfrac{x}{2}+1 \right)}^{2}}$

$=\dfrac{1}{2}{{e}^{x}}\left( {{\tan }^{2}}\dfrac{x}{2}+1+2\tan \dfrac{x}{2} \right)$

But, $1+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}$

$=\dfrac{1}{2}{{e}^{x}}\left( {{\sec }^{2}}\dfrac{x}{2}+2\tan \dfrac{x}{2} \right)$

$={{e}^{x}}\left( \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}+\tan \dfrac{x}{2} \right)$

$\Rightarrow {{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)={{e}^{x}}\left( \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}+\tan \dfrac{x}{2} \right)$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

If we say, $f(x)=\tan \dfrac{x}{2}\Rightarrow f'(x)=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$

Thus, we get – $\int{{{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)}dx={{e}^{x}}\tan \dfrac{x}{2}+C$


19. Integrate the function - ${{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)$

Ans: Say, $I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}$

Suppose, $f(x)=\dfrac{1}{x}\Rightarrow f'(x)=-\dfrac{1}{{{x}^{2}}}$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

Thus, we get – $I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}=\dfrac{{{e}^{x}}}{x}+C$


20. Integrate the function - $\dfrac{(x-3){{e}^{x}}}{{{(x-1)}^{3}}}$

Ans: $\int{{{e}^{x}}\dfrac{(x-3)}{{{(x-1)}^{3}}}dx=\int{{{e}^{x}}\left[ \dfrac{(x-1-2)}{{{(x-1)}^{3}}} \right]dx}}$

$=\int{{{e}^{x}}\left[ \dfrac{(x-1)}{{{(x-1)}^{3}}}-\dfrac{2}{{{(x-1)}^{3}}} \right]dx}$

$=\int{{{e}^{x}}\left[ \dfrac{1}{{{(x-1)}^{2}}}-\dfrac{2}{{{(x-1)}^{3}}} \right]dx}$

Suppose, $f(x)=\dfrac{1}{{{(x-1)}^{2}}}\Rightarrow f'(x)=-\dfrac{2}{{{(x-1)}^{3}}}$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

Thus, $\int{{{e}^{x}}\dfrac{(x-3)}{{{(x-1)}^{3}}}dx=\dfrac{{{e}^{x}}}{{{(x-1)}^{2}}}+C}$


21. Integrate the function - ${{e}^{2x}}\sin x$

Ans: Say,  $I=\int{{{e}^{2x}}\sin xdx}$

Perform Integration by parts – $\int{uv}dx=u\int{vdx}-\int{\left( u'\int{vdx} \right)dx}$

With –$u=\sin x\text{   }v={{e}^{2x}}$

$I=\int{{{e}^{2x}}\sin x}dx=\sin x\int{{{e}^{2x}}dx}-\int{\left[ \left( \dfrac{d}{dx}\sin x \right)\int{{{e}^{2x}}dx} \right]dx}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\int{\left[ \left( \cos x \right)\dfrac{{{e}^{2x}}}{2} \right]dx}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\int{\left( {{e}^{2x}}\cos x \right)dx}$

Perform Integration by parts for – $\int{\left( {{e}^{2x}}\cos x \right)dx}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\left\{ \cos x\int{{{e}^{2x}}dx}-\int{\left[ \left( \dfrac{d}{dx}\cos x \right)\int{{{e}^{2x}}dx} \right]dx} \right\}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\left\{ \cos x\dfrac{{{e}^{2x}}}{2}-\int{\left[ \left( -\sin x \right)\dfrac{{{e}^{2x}}}{2} \right]dx} \right\}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\left\{ \cos x\dfrac{{{e}^{2x}}}{2}+\dfrac{1}{2}\int{(\sin x){{e}^{2x}}dx} \right\}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{{{e}^{2x}}\cos x}{4}-\dfrac{1}{4}\left\{ \int{(\sin x){{e}^{2x}}dx} \right\}$

But, $I=\int{{{e}^{2x}}\sin xdx}$

$\Rightarrow I=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{{{e}^{2x}}\cos x}{4}-\dfrac{1}{4}I$

$\Rightarrow I+\dfrac{1}{4}I=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{{{e}^{2x}}\cos x}{4}$

$\Rightarrow \dfrac{5}{4}I=\dfrac{{{e}^{2x}}\sin x}{2}-\dfrac{{{e}^{2x}}\cos x}{4}$

$\Rightarrow \dfrac{5}{4}I=\dfrac{2{{e}^{2x}}\sin x}{4}-\dfrac{{{e}^{2x}}\cos x}{4}$

$\Rightarrow 5I={{e}^{2x}}(2\sin x-\cos x)$

Thus, we get – $I=\dfrac{{{e}^{2x}}}{5}(2\sin x-\cos x)+C$.


22. Integrate the function - ${{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)$

Ans: Say, $x=\tan \theta \text{ }\Rightarrow \text{dx=se}{{\text{c}}^{2}}\theta d\theta $

$\therefore {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+{{\tan }^{3}}\theta } \right)$

But, $\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{3}}\theta }$

$\Rightarrow {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+{{\tan }^{3}}\theta } \right)=\therefore {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)={{\sin }^{-1}}\left( \sin 2\theta  \right)=2\theta $

Therefore, $\int{{{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)dx}=\int{2\theta \text{se}{{\text{c}}^{2}}\theta d\theta }$

$=2\int{\theta \text{se}{{\text{c}}^{2}}\theta d\theta }$

Perform Integration by parts – $\int{uv}dx=u\int{vdx}-\int{\left( u'\int{vdx} \right)dx}$

With –$u=\theta \text{   }v={{\sec }^{2}}\theta $

$2\int{\theta \text{se}{{\text{c}}^{2}}\theta d\theta }=2\left\{ \theta \int{{{\sec }^{2}}\theta d\theta }-\int{\left[ \left( \dfrac{d}{d\theta }\theta  \right)\int{{{\sec }^{2}}\theta d\theta } \right]d\theta } \right\}$

$=2\left\{ \theta \tan \theta -\int{\left[ \tan \theta  \right]d\theta } \right\}$

$=2\left\{ \theta \tan \theta -(-\log |\cos \theta |) \right\}+C$

$=2\left\{ \theta \tan \theta +\log |\cos \theta | \right\}+C$

Replace $\theta ={{\tan }^{-1}}x$

$=2\left\{ {{\tan }^{-1}}x\tan ({{\tan }^{-1}}x)+\log |\cos ({{\tan }^{-1}}x)| \right\}+C$

It is known that – ${{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}}$

$=2\left\{ {{\tan }^{-1}}x(x)+\log |\cos ({{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}})| \right\}+C$

$=2\left\{ x{{\tan }^{-1}}x+\log |\dfrac{1}{\sqrt{1+{{x}^{2}}}}| \right\}+C$

$=2\left\{ x{{\tan }^{-1}}x+\log {{(1+{{x}^{2}})}^{-\dfrac{1}{2}}} \right\}+C$

Here, $\log {{m}^{n}}=n\log m$

$=2\left\{ x{{\tan }^{-1}}x-\dfrac{1}{2}\log (1+{{x}^{2}}) \right\}+C$

$=2x{{\tan }^{-1}}x-\log (1+{{x}^{2}})+C$

Thus, $\int{{{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)dx}=2x{{\tan }^{-1}}x-\log (1+{{x}^{2}})+C$


23. Choose the correct answer: $\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}dx$ equals

  1. $\dfrac{1}{3}{{e}^{{{x}^{3}}}}+C$

  2. $\dfrac{1}{3}{{e}^{{{x}^{2}}}}+C$

  3. $\dfrac{1}{2}{{e}^{{{x}^{3}}}}+C$

  4. $\dfrac{1}{2}{{e}^{{{x}^{2}}}}+C$

Ans: Say, $I=\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}dx$

Suppose, $t={{x}^{3}}\Rightarrow dt=3{{x}^{2}}dx$

Rewriting the equation – $I=\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}dx=\dfrac{1}{3}\int{{{e}^{t}}}dt$

$\Rightarrow I=\dfrac{1}{3}\int{{{e}^{t}}}dt=\dfrac{1}{3}{{e}^{t}}+C$

Replacing $t={{x}^{3}}$

$\Rightarrow I=\dfrac{1}{3}{{e}^{{{x}^{3}}}}+C$

The correct option is A.


24. Choose the correct answer: $\int{{{e}^{x}}\sec x(1+\tan x)}dx$

  1. ${{e}^{x}}\cos x+C$

  2. ${{e}^{x}}\sec x+C$

  3. ${{e}^{x}}\sin x+C$

  4. ${{e}^{x}}\tan x+C$

Ans: Say, $I=\int{{{e}^{x}}\sec x(1+\tan x)}dx$

$\Rightarrow I=\int{{{e}^{x}}(\sec x+\sec x\tan x)}dx$

Suppose, $f(x)=\sec x\Rightarrow f'(x)=\sec x\tan x$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

$\Rightarrow I=\int{{{e}^{x}}(\sec x+\sec x\tan x)}dx={{e}^{x}}\sec x+C$

Thus, $I={{e}^{x}}\sec x+C$

The correct option is B.


Conclusion

NCERT for Chapter 7 Exercise 7.6 in Class 12 Mathematics, as provided by Vedantu, has been a crucial learning experience. Through solving a series of problems in class 12 maths ex 7.6 involving integration of rational functions, we've grasped fundamental techniques like partial fraction decomposition and trigonometric substitutions. Understanding these methods is key to mastering integration. It's essential to focus on practicing these methods extensively to build confidence and proficiency. By doing so, we not only enhance our mathematical skills but also lay a solid foundation for tackling more complex problems in the future.


Class 12 Maths Chapter 7: Exercises Breakdown

S.No.

Chapter 7 - Integrals Exercises in PDF Format

1

Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs)

2

Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

4

Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs)

5

Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs)

6

Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs)

7

Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers)

8

Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs)

9

Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs)

10

Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions



CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Mathematics Chapter 7 Integrals – NCERT Solutions Exercise 7.6 [2025-26]

1. What is the correct method to apply the 'Integration by Parts' rule for problems in NCERT Class 12 Maths Chapter 7?

The method is based on the formula ∫u·v dx = u∫v dx - ∫(u'∫v dx) dx. The key steps are:
1. Identify the two functions in the integrand.
2. Choose the first function (u) and second function (v) using the ILATE rule (Inverse, Logarithmic, Algebraic, Trigonometric, Exponential).
3. Differentiate the first function (u) to get u' and integrate the second function (v).
4. Substitute these values into the formula and simplify the resulting integral as per the CBSE 2025-26 syllabus.

2. Why is the ILATE rule so important for choosing functions when using integration by parts?

The ILATE rule is a crucial guideline because the goal of integration by parts is to arrive at an integral that is simpler to solve than the original one. By choosing the first function (u) from a category that appears earlier in ILATE, you generally pick a function that simplifies upon differentiation (e.g., log(x) becomes 1/x, or x² becomes 2x). This makes the second integral in the formula, ∫(u'∫v dx) dx, much easier to evaluate.

3. How do you solve an integral like ∫x²eˣ dx which requires applying integration by parts more than once?

For integrals where the algebraic function's power is greater than one, you must apply the integration by parts method repeatedly. Here is the step-by-step approach for a problem like ∫x²eˣ dx:

  • First Application: Set u = x² and v = eˣ. After applying the formula, you will be left with a new integral, for example, -2∫xeˣ dx.
  • Second Application: Apply integration by parts again to this new integral, ∫xeˣ dx, by setting u = x and v = eˣ.
  • Combine and Simplify: Substitute the result of the second integration back into the expression from the first step and add the constant of integration, C, to get the final answer.

4. What is the logic behind integrating functions like tan⁻¹x or log(x) by assuming '1' as the second function?

For functions whose integral is not directly known but whose derivative is simpler (like tan⁻¹x or log x), we use a standard technique. We introduce '1' as the second function (v). This approach works because:

  • The integral of '1' is simply x, which is an easy-to-manage algebraic function.
  • The derivative of the first function (u = tan⁻¹x or u = log x) results in a simpler algebraic form (1/(1+x²) or 1/x).
  • This transforms the problem into a new integral involving an algebraic function, which is typically much easier to solve using standard methods.

5. How do you solve integrals of the special form ∫eˣ[f(x) + f'(x)]dx in Exercise 7.6?

For integrals in this specific format, there is a direct result derived from the integration by parts formula. The solution is given by the property: ∫eˣ[f(x) + f'(x)]dx = eˣf(x) + C. To solve these problems correctly:
1. Identify the function f(x) within the brackets.
2. Verify that the other term in the brackets is its exact derivative, f'(x).
3. Once confirmed, you can directly write the answer as eˣf(x) + C. For instance, in ∫eˣ(sin x + cos x)dx, f(x) = sin x and f'(x) = cos x, so the solution is eˣsin x + C.

6. In problems like ∫e²ˣ sin(x) dx, the original integral reappears in the solution. Why does this happen and how does it lead to the final answer?

This phenomenon occurs because both exponential and trigonometric functions are cyclic in their derivatives and integrals—they do not simplify to a constant or zero. When you apply integration by parts twice to such a product, the derivative/integral cycle brings you back to a term containing the original integral (let's call it 'I'). This creates an algebraic equation (e.g., I = [some terms] - kI). You can then solve for 'I' by moving all 'I' terms to one side and dividing to find the function's integral.

7. How can I get correct, step-by-step NCERT Solutions for Class 12 Maths Chapter 7 for the 2025-26 board exams?

You can find detailed, step-by-step NCERT Solutions for Class 12 Maths Chapter 7, including all questions from Exercise 7.6, on educational platforms like Vedantu. These solutions are curated by subject matter experts to be fully compliant with the latest CBSE 2025-26 syllabus and guidelines. They clearly explain the application of key methods like integration by parts and the ILATE rule, ensuring you understand the correct problem-solving approach for board exams.