Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Chapter 5 Continuity and Differentiability – NCERT Solutions Miscellaneous Exercise 2025-26

ffImage
banner

Download Free PDF of Continuity and Differentiability Class 12 Maths Miscellaneous Exercise Solutions

You're about to strengthen your grasp of Class 12 Maths with a close look at Continuity and Differentiability, one of the most significant chapters for CBSE board success. The NCERT Solutions for Class 12 Maths Chapter 5 Miscellaneous Exercise are organized to build your confidence in handling board-level mixed questions and sharpen your calculation speed.

toc-symbolTable of Content
toggle-arrow

Every solution here uses stepwise reasoning and highlights common errors, matching exactly what CBSE examiners look for. Since this chapter can carry up to 9 marks and includes challenging problems often discussed in class, carefully following each explanation will improve your ability to apply differentiability rules and identify types of discontinuity.


Whether you want help with application-based differentiability problems or need quick revision before exams, you'll find clear answers that match the latest board syllabus. If you would like to double-check the official scope, you can also refer to the Class 12 Maths syllabus any time. All solutions are prepared and reviewed by experienced Vedantu faculty, so you can trust their accuracy and exam alignment.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability

Miscellaneous Exercise

Differentiate w.r.t. to  $ \mathbf{x} $ , the following function. 

1.$\mathbf{y=(3}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-9x+5}{{\mathbf{)}}^{\mathbf{9}}} $ .

Ans: The given function is

$\text{y=(3}{{\text{x}}^{\text{2}}}\text{-9x+5}{{\text{)}}^{\text{9}}} $ .

Differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}{{\text{(3}{{\text{x}}^{\text{2}}}\text{-9x+5)}}^{\text{9}}}\\&\text{=9(3}{{\text{x}}^{\text{2}}}\text{-9x+5}{{\text{)}}^{\text{8}}}\text{}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(3}{{\text{x}}^{\text{2}}}\text{-9x+5)}\\&\text{=9(3}{{\text{x}}^{\text{2}}}\text{-9x+5}{{\text{)}}^{\text{8}}}\text{}\!\!\times\!\!\text{(6x-9x)} \\  & \text{=9(3}{{\text{x}}^{\text{2}}}\text{-9x+5}{{\text{)}}^{\text{8}}}\text{ }\!\!\times\!\!\text{3(2x-3)}\\&\text{=27(3}{{\text{x}}^{\text{2}}}\text{-9x+5}{{\text{)}}^{\text{8}}}\text{(2x-3)} \\ \end{align} $ 


2.$\mathbf{y=si}{{\mathbf{n}}^{\mathbf{3}}}\mathbf{x+co}{{\mathbf{s}}^{\mathbf{6}}}\mathbf{x} $ .

Ans: The given function is

$\text{y=si}{{\text{n}}^{\text{3}}}\text{x+co}{{\text{s}}^{\text{6}}}\text{x} $ .

Differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{=(si}{{\text{n}}^{\text{3}}}\text{x)+}\dfrac{\text{d}}{\text{dx}}\text{(co}{{\text{s}}^{\text{6}}}\text{x)}\\&\text{=3si}{{\text{n}}^{\text{2}}}\text{x}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(sinx)+6co}{{\text{s}}^{\text{5}}}\text{x}\dfrac{\text{d}}{\text{dx}}\text{(cosx)}\\&\text{=3si}{{\text{n}}^{\text{2}}}\text{x}\!\!\times\!\!\text{cosx+6co}{{\text{s}}^{\text{5}}}\text{x(-sinx)}\\&\text{=3sin}^2\text{xcosx(sinx-2co}{{\text{s}}^{\text{4}}}\text{x)} \\ \end{align} $


3.  $ \mathbf{y=(5x}{{\mathbf{)}}^{\mathbf{3cos2x}}} $ .

Ans: The given function is  $ \text{y=(5x}{{\text{)}}^{\text{3cos2x}}} $ .

First, take the logarithm of both sides of the function.

 $ \log y=3\cos 2x\log 5x $ .

Then, differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=3}\left[\text{log5}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(cos2x)+cos2x}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(log5x)}\right]\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=3y}\left[\text{log5x(-sin2x)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(2x)+cos2x}\text{.}\dfrac{\text{1}}{\text{5x}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(5x)} \right] \\  & \Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=3y}\left[ \text{-2sin2xlog5x+}\dfrac{\text{cos2x}}{\text{x}} \right] \\  & \Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=3y}\left[\dfrac{\text{3cos2x}}{\text{x}}\text{-6sin2xlog5x} \right] \\ \end{align} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=(5x}{{\text{)}}^{\text{3cos2x}}}\left[ \dfrac{\text{3cos2x}}{\text{x}}\text{-6sin2xlog5x} \right] $ .

 

4. $ \text{y=si}{{\text{n}}^{\text{-1}}}\left( \text{x}\sqrt{\text{x}} \right)\text{,}\,\,\,\,\text{0}\le \text{x}\le 1 $ .

Ans: The given function is  $ \text{y=si}{{\text{n}}^{\text{-1}}}\left( \text{x}\sqrt{\text{x}} \right) $ .

Then, differentiating both sides with respect to  $ \text{x} $  by using the chain rule gives

$\begin{align}&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{si}{{\text{n}}^{\text{-1}}}\left(\text{x}\sqrt{\text{x}}\right)\\&=\dfrac{\text{1}}{\sqrt{\text{1-}{{\left(\text{x}\sqrt{\text{x}}\right)}^{2}}}}\text{}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\left(\text{x}\sqrt{\text{x}}\right)\\&=\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{3}}}}}\text{.}\dfrac{\text{d}}{\text{dx}}\left({{\text{x}}^{\dfrac{3}{2}}}\right)\\&=\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{3}}}}}\text{}\!\!\times\!\!\text{}\dfrac{\text{3}}{\text{2}}\text{.}{{\text{x}}^{\dfrac{\text{1}}{\text{2}}}}\\&=\dfrac{\text{3}\sqrt{\text{x}}}{\text{2}\sqrt{\text{1-}{{\text{x}}^{\text{3}}}}} \\ \end{align} $ 

Hence,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{3}}{\text{2}}\sqrt{\dfrac{\text{x}}{\text{1-}{{\text{x}}^{\text{3}}}}} $ .


5. $\text{y=}\dfrac{\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}}}{\sqrt{\text{2x+7}}}\text{,}\,\,\,\,\,\text{-2}$<$x$<$2$ .

Ans: The given function is 

$\text{y=}\dfrac{\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}}}{\sqrt{\text{2x+7}}} $ .

Then, differentiating both sides with respect to  $ \text{x} $  using the quotient rule gives

$\begin{align}&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\sqrt{\text{2x+7}}\dfrac{\text{d}}{\text{dx}}\left(\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}} \right)\text{-}\left( \text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}} \right)\dfrac{\text{d}}{\text{dx}}\left(\sqrt{\text{2x+7}}\right)}{{{\left(\sqrt{\text{2x+7}}\right)}^{\text{2}}}}\\&=\dfrac{\sqrt{\text{2x+7}}\left[\dfrac{\text{-1}}{\sqrt{\text{1-}{{\left(\dfrac{\text{x}}{\text{2}}\right)}^{\text{2}}}}}\text{.}\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{x}}{\text{2}} \right) \right]\text{-}\left( \text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}}\right)\dfrac{\text{1}}{\text{2}\sqrt{\text{2x+7}}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(2x+7)}}{\text{2x+7}}\\&=\dfrac{\sqrt{\text{2x+7}}\dfrac{\text{-1}}{\sqrt{\text{4-}{{\text{x}}^{\text{2}}}}}\text{-}\left( \text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}} \right)\dfrac{\text{2}}{\text{2}\sqrt{\text{2x+7}}}}{\text{2x+7}}\\&=\dfrac{\text{-}\sqrt{\text{2x+7}}}{\sqrt{\text{4-}{{\text{x}}^{\text{2}}}}\text{}\!\!\times\!\!\text{(2x+7)}}\text{-}\dfrac{\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}}}{\left( \sqrt{\text{2x+7}} \right)\left( \text{2x+7} \right)} \\ \end{align} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=-}\left[ \dfrac{\text{1}}{\sqrt{4-x^2}\sqrt{2x+7}}\text{+}\dfrac{\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{x}}{\text{2}}}{{{\left( \text{2x+7} \right)}^{\dfrac{\text{3}}{\text{2}}}}} \right] $ .


6. $ \mathbf{y=co}{{\mathbf{t}}^{\mathbf{-1}}}\left[ \dfrac{\sqrt{\mathbf{1+sinx}}\mathbf{+}\sqrt{\mathbf{1-sinx}}}{\sqrt{\mathbf{1+sinx}}\mathbf{-}\sqrt{\mathbf{1-sinx}}} \right]\mathbf{,}\text{  }\mathbf{0}<\mathbf{x}<\mathbf{2} $ .

Ans: The given function is  $ \text{y=co}{{\text{t}}^{\text{-1}}}\left[ \dfrac{\sqrt{\text{1+sinx}}\text{+}\sqrt{\text{1-sinx}}}{\sqrt{\text{1+sinx}}\text{-}\sqrt{\text{1-sinx}}} \right] $                 ……. (1)

Now,

$\dfrac{\sqrt{\text{1+sinx}}\text{+}\sqrt{\text{1-sinx}}}{\sqrt{\text{1+sinx}}\text{-}\sqrt{\text{1-sinx}}} $

$\begin{align}&=\dfrac{\left(\sqrt{\text{1+sinx}}\text{+}\sqrt{\text{1-sinx}}\right)}{\left(\sqrt{\text{1+sinx}}\text{-}\sqrt{\text{1-sinx}}\right)\sqrt{\text{1+sinx}}\text{+}\sqrt{\text{1-sinx}}}\\&=\dfrac{\text{(1+sinx)+(1-sinx)+2}\sqrt{\text{(1+sinx)-(1-sinx)}}}{\text{(1+sinx)-(1-sinx)}}\\&=\dfrac{\text{2+2}\sqrt{\text{1-si}{{\text{n}}^{\text{2}}}\text{x}}}{\text{2sinx}}\\&=\dfrac{\text{1+cosx}}{\text{sinx}}\\&=\dfrac{\text{2co}{{\text{s}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}}{\text{2sinx}\dfrac{\text{x}}{\text{2}}\text{cos}\dfrac{\text{x}}{\text{2}}}\\\end{align}$ 

Therefore,

$\dfrac{\sqrt{\text{1+sinx}}\text{+}\sqrt{\text{1-sinx}}}{\sqrt{\text{1+sinx}}\text{-}\sqrt{\text{1-sinx}}}\text{=cot}\dfrac{\text{x}}{\text{2}} $ .                                                 …… (2)

So, from the equations (1) and (2) we obtain,

$\begin{align}&\text{y=co}{{\text{t}}^{\text{-1}}}\left(\text{co}{{\text{t}}^{\dfrac{\text{x}}{\text{2}}}}\right)\\&\Rightarrow\text{y=}\dfrac{\text{x}}{\text{2}}\\\end{align} $ 

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\dfrac{\text{d}}{\text{dx}}\text{(x)} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}} $ .


7. $ \text{y=(logx}{{\text{)}}^{\text{logx}}}\text{,}\,\,\,\text{x}>1 $ .

Ans: The given function is  $ \text{y=(logx}{{\text{)}}^{\text{logx}}} $ .

First, take the logarithm on both sides of the function.

 $ \text{logy=logx }\!\!\times\!\!\text{ log(logx)} $ .

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[\text{logx}\!\!\times\!\!\text{log(logx)}\right]\\&\Rightarrow \dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=log(logx) }\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(logx)+}\dfrac{\text{d}}{\text{dx}}\left[\text{log(logx)}\right]\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=y}\left[\text{log(logx)}\!\!\times\!\!\text{}\dfrac{\text{1}}{\text{x}}\text{+logx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}\right]\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=y}\left[\dfrac{\text{1}}{\text{x}}\text{log(logx)+}\dfrac{\text{1}}{\text{x}} \right] \\ \end{align} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{logx}}}\left[ \dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{log(logx)}}{\text{x}} \right] $ .


8. $ \mathbf{y=cos(acosx+bsinx)} $ , for some constants  $ \text{a} $  and  $ \mathbf{b} $ .

Ans: The given function is  $ \text{y=cos(acosx+bsinx)} $.

Now, differentiating both sides with respect to  $ \text{x} $  by using the chain rule of derivatives gives

$\begin{align}&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{cos(acosx+bsinx)}\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=-sin(acosx+bsinx)}\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(acosx+bsinx)} \\ & =\text{-sin(acosx+bsinx)}\!\!\times\!\!\text{}\left[\text{a(-sinx)+bcosx}\right] \\ \end{align} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}=\text{(asinx-bcosx) }\!\!\times\!\!\text{ sin(acosx+bsinx)} $ .


9. $\mathbf{y=(sinx-cosx}{{\mathbf{)}}^{\mathbf{(sinx-cosx)}}}\mathbf{,}\,\,\,\dfrac{\mathbf{\pi }}{\mathbf{4}}<\mathbf{x}<\dfrac{\mathbf{3\pi }}{\mathbf{4}} $ .

Ans: The given function is  $ \text{y=(sinx-cosx}{{\text{)}}^{\text{(sinx-cosx)}}}$.

First, take the logarithm on both sides of the function.

 $ \begin{align}& \text{logy=log}\left[ {{\text{(sinx-cosx)}}^{\text{(sinx-cosx)}}} \right] \\ &\Rightarrow\text{logy=(sinx-cosx)}\!\!\times\!\!\text{log(sinx-cosx)} \\ \end{align} $ 

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[ \text{(sinx-cosx) }\!\!\times\!\!\text{ log(sinx-cosx)} \right]\\&\Rightarrow\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=log(sinx-cosx)}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(sinx-cosx)+(sinx-cosx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(sinx-cosx)} \\&\Rightarrow\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=log(sinx-cosx)}\!\!\times\!\!\text{(cosx+sinx)+(sinx-cosx)}\!\!\times\!\!\text{}\dfrac{\text{1}}{\text{(sinx-cosx)}}\text{}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(sinx-cosx)}\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=(sinx-cosx}{{\text{)}}^{\text{(sinx-cosx)}}}\left[\left(\text{cosx+sinx}\right)\text{}\!\!\times\!\!\text{ log(sinx-cosx)+(cosx+sinx)} \right] \\ \end{align} $  

Hence, the required derivative is 

$\dfrac{\text{dy}}{\text{dx}}\text{=(sinx-cosx}{{\text{)}}^{\text{(sinx-cosx)}}}\text{(cosx+sinx)}\left[ \text{1+log(sinx-cosx)} \right] $ .


10. $\mathbf{y=}{{\mathbf{x}}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\mathbf{a}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{x}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{a}}} $ , for some fixed  $ \text{a}>0 $  and  $ \text{x}>0 $ .

Ans: The given function is

$\text{y=}{{\text{x}}^{\text{x}}}\text{+}{{\text{x}}^{\text{a}}}\text{+}{{\text{a}}^{\text{x}}}\text{+}{{\text{a}}^{\text{a}}} $ .

Now, assume that  $ {{\text{x}}^{\text{x}}}\text{=u} $ ,

${{\text{x}}^{\text{a}}}\text{=v} $ ,  $ {{\text{a}}^{\text{x}}}\text{=w} $  and  $ {{\text{a}}^{\text{a}}}\text{=s} $ 

Therefore, we have  $ \text{y=u+v+w+s} $ .

So, differentiating both sides with respect to  $ \text{x} $  gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{dw}}{\text{dx}}\text{+}\dfrac{\text{ds}}{\text{dx}} $                                            …… (1)

Also,  $ \text{u=}{{\text{x}}^{\text{x}}} $ 

 $ \begin{align}  & \Rightarrow \text{logu=log}{{\text{x}}^{\text{x}}} \\  & \Rightarrow \text{logu=xlogx} \\ \end{align} $ 

Then, differentiating both sides with respect to  $ \text{x} $  gives 

$\begin{align}&\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=logx}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(x)+x}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(logx)}\\&\Rightarrow\dfrac{\text{du}}{\text{dx}}\text{=u}\left[\text{logx}\text{.1+x}\text{.}\dfrac{\text{1}}{\text{x}} \right] \\ \end{align} $ 

Thus,  $ \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{ }\!\![\!\!\text{ logx+1 }\!\!]\!\!\text{ =}{{\text{x}}^{\text{x}}}\text{(1+logx)} $                           ……. (2)

Again,  $ \text{v=}{{\text{x}}^{\text{a}}} $ 

Then, differentiating both sides with respect to  $ \text{x} $  gives

$\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{a}}}\text{)} $ 

$ \Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=a}{{\text{x}}^{\text{a-1}}} $                                                                  …… (3)

Also,  $ \text{w=}{{\text{a}}^{\text{x}}} $

$\begin{align}&\Rightarrow\text{logw=log}{{\text{a}}^{\text{x}}}\\&\Rightarrow \text{logw=xloga} \\ \end{align} $ 

So, differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{w}}\text{.}\dfrac{\text{dw}}{\text{dx}}\text{=loga}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(x)}\\&\Rightarrow\dfrac{\text{dw}}{\text{dx}}\text{=wloga} \\ \end{align} $ 

$\Rightarrow\dfrac{\text{dw}}{\text{dx}}\text{=}{{\text{a}}^{\text{x}}}\text{loga} $                                                          ……… (4)

and

 $ \text{s=}{{\text{a}}^{\text{a}}} $ 

Then differentiating both sides with respect to  $ \text{x} $  gives

 $ \dfrac{\text{ds}}{\text{dx}}\text{=0} $ ,                                                                         ……(5)

as  $ \text{a} $  is constant, and so  $ {{\text{a}}^{\text{a}}} $  is also a constant.

Now, from the equations (1), (2), (3), (4), and (5) we have

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)+a}{{\text{x}}^{\text{a-1}}}\text{+}{{\text{a}}^{\text{x}}}\text{loga+0} $ 

Hence,$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)+a}{{\text{x}}^{\text{a-1}}}\text{+}{{\text{a}}^{\text{x}}}\text{loga} $ .


11. $\mathbf{y=}{{\mathbf{x}}^{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-3}}}\mathbf{+(x-3}{{\mathbf{)}}^{{{\mathbf{x}}^{\mathbf{2}}}}} $ , for  $ \text{x}>3 $ .

Ans: The given function is

$\text{y=}{{\text{x}}^{{{\text{x}}^{\text{2}}}\text{-3}}}\text{+(x-3}{{\text{)}}^{{{\text{x}}^{\text{2}}}}} $ . 

Now suppose that  $ \text{u=}{{\text{x}}^{{{\text{x}}^{\text{2}}}\text{-3}}} $  and  $ \text{v=(x-3}{{\text{)}}^{{{\text{x}}^{\text{2}}}}} $ 

Therefore,  $ \text{y=u+v} $ .

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}} $                                                ……. (1)

Also,  $ \text{u=}{{\text{x}}^{{{\text{x}}^{\text{2}}}\text{-3}}} $ .

Take the logarithm on both sides of the equation.

$\begin{align}&\Rightarrow\text{logu=log(}{{\text{x}}^{{{\text{x}}^{\text{2}}}\text{-3}}}\text{)} \\&\Rightarrow\text{logu=(}{{\text{x}}^{\text{2}}}\text{-3)logx} \\ \end{align} $ 

Differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=logx}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-3)+(}{{\text{x}}^{\text{2}}}\text{-3)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(logx)}\\&\Rightarrow\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=logx}\text{.2x+(}{{\text{x}}^{\text{2}}}\text{-3)}\text{.}\dfrac{\text{1}}{\text{x}} \\ \end{align} $ 

Hence,  $\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{{{\text{x}}^{\text{2}}}\text{-3}}}\text{.}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{-3}}{\text{x}}\text{+2 }\!\!\times\!\!\text{ logx} \right] $ .                            …… (2)

Again,  $ \text{v=(x-3}{{\text{)}}^{{{\text{x}}^{\text{2}}}}} $ .

Take the logarithm on both sides of the equation.

$\begin{align}&\Rightarrow\text{logv=log(x-3}{{\text{)}}^{{{\text{x}}^{\text{2}}}}}\\&\Rightarrow \text{logv=}{{\text{x}}^{\text{2}}}\text{log(x-3)} \\ \end{align} $ 

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{u}}\text{.}\dfrac{\text{dv}}{\text{dx}}\text{=log(x-3)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{)+}{{\text{x}}^{\text{2}}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{}\!\![\!\!\text{log(x-3)}\!\!]\!\!\text{}\\&\Rightarrow\dfrac{\text{1}}{\text{u}}\text{.}\dfrac{\text{dv}}{\text{dx}}\text{=log(x-3)}\text{.2x+}{{\text{x}}^{\text{2}}}\text{.}\dfrac{\text{1}}{\text{x-3}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(x-3)}\\&\Rightarrow\dfrac{\text{dv}}{\text{dx}}\text{=v}\text{.}\left[\text{2xlog(x-3)+}\dfrac{{{\text{x}}^{\text{2}}}}{\text{x-3}}\text{.1} \right] \\ \end{align} $ 

Hence,$\dfrac{\text{dv}}{\text{dx}}\text{=(x-3}{{\text{)}}^{{{\text{x}}^{\text{2}}}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}}{\text{x-3}}\text{+2xlog(x-3)} \right] $                                    …… (3)

Thus, from the equations (1), (2) and (3) we obtain

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{{{\text{x}}^{\text{2}}}\text{-3}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{-3}}{\text{x}}\text{+2xlogx} \right]\text{+(x-3}{{\text{)}}^{{{\text{x}}^{\text{2}}}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}}{\text{x-3}}\text{+2xlog(x-3)} \right] $ .


12. Find  $ \dfrac{\mathbf{dy}}{\mathbf{dx}} $  if  $\mathbf{y=12(1-cost),x=10(t-sint),}\,\,-\dfrac{\mathbf{\pi }}{\mathbf{2}}<\mathbf{t}<\dfrac{\mathbf{\pi }}{\mathbf{2}} $ .

Ans: The given equations are  $ \text{y=12(1-cost),} $                                 …… (1)

and  $ \text{x=10(t-sint)} $                                                                    …… (2)

Then differentiating the equations (1) and (2) with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{dx}}{\text{dt}}\text{=}\dfrac{\text{d}}{\text{dt}}\left[\text{10(t-sint)}\right]\text{=10}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dt}}\text{(t-sint)=10(1-cost)}\\&\dfrac{\text{dy}}{\text{dt}}\text{=}\dfrac{\text{d}}{\text{dt}}\left[\text{12(1-cost)}\right]\text{=12}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dt}}\text{(1-cost)=12 }\!\!\times\!\!\text{ }\left[ \text{0-(-sint)} \right]\text{=12sint} \\ \end{align} $ 

Therefore, by dividing  $ \dfrac{\text{dy}}{\text{dt}} $  by  $ \dfrac{\text{dx}}{\text{dt}} $  we have,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\left(\dfrac{\text{dy}}{\text{dt}}\right)}{\left(\dfrac{\text{dx}}{\text{dt}}\right)}\text{=}\dfrac{\text{12sint}}{\text{10(1-cost)}}\text{=}\dfrac{\text{12 }\!\!\times\!\!\text{ 2sin}\dfrac{\text{t}}{\text{2}}\text{ }\!\!\times\!\!\text{ cos}\dfrac{\text{t}}{\text{2}}}{\text{10}\!\!\times\!\!\text{2si}{{\text{n}}^{\text{2}}}\dfrac{\text{t}}{\text{2}}} $

Hence,  $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{6}}{\text{5}}\text{cot}\dfrac{\text{t}}{\text{2}} $ .


13. Find  $ \dfrac{\text{dy}}{\text{dx}} $ , if  $ \text{y=si}{{\text{n}}^{\text{-1}}}\text{x+si}{{\text{n}}^{\text{-1}}}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}\text{,}\,\,\,\text{0}<\text{x}<\text{1} $ .

Ans: The given equation is  $\text{y=si}{{\text{n}}^{\text{-1}}}\text{x+si}{{\text{n}}^{\text{-1}}}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}} $ .

Differentiating both sides of the equation with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[\text{si}{{\text{n}}^{\text{-1}}}\text{x+si}{{\text{n}}^{\text{-1}}}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}\right]\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(si}{{\text{n}}^{\text{-1}}}\text{x)+}\dfrac{\text{d}}{\text{dx}}\left(\text{si}{{\text{n}}^{\text{-1}}}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}} \right) \\ \end{align} $ 

$\begin{align}&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}\text{+}\dfrac{\text{1}}{\sqrt{\text{1-}{{\left( \sqrt{\text{1-}{{\text{x}}^{\text{2}}}} \right)}^{2}}}}\text{}\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \sqrt{\text{1-}{{\text{x}}^{\text{2}}}} \right) \\  &\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}\text{-}\dfrac{1}{\sqrt{1-1+{{\text{x}}^{2}}}}\dfrac{\text{1}}{\text{2 }\!\!\times\!\!\text{ }\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}\times 2\text{x}\\&\Rightarrow\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}\text{-}\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}} \\ \end{align} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=0} $ .


14. If  $\mathbf{x}\sqrt{\mathbf{1+y}}\mathbf{+y}\sqrt{\mathbf{1+x}}\mathbf{=0} $, for  $-1$<$x$<$1$ ,  prove that  

$\dfrac{\mathbf{dy}}{\mathbf{dx}}\mathbf{=-}\dfrac{\mathbf{1}}{{{\mathbf{(1+x)}}^{\mathbf{2}}}} $ .

Ans: The given equation is

 $ \begin{align}& \text{x}\sqrt{\text{1+y}}\text{+y}\sqrt{\text{1+x}}\text{=0} \\  & \Rightarrow \text{x}\sqrt{\text{1+y}}\text{=y}\sqrt{\text{1+x}} \\ \end{align} $ 

Now, squaring both sides of the equation gives

 $ \begin{align}& {{\text{x}}^{\text{2}}}\text{(1+y)=}{{\text{y}}^{\text{2}}}\text{(1+x)} \\  & \Rightarrow {{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{2}}}\text{y=}{{\text{y}}^{\text{2}}}\text{+x}{{\text{y}}^{\text{2}}} \\  & \Rightarrow {{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2}}}\text{=x}{{\text{y}}^{\text{2}}}\text{-}{{\text{x}}^{\text{2}}}\text{y} \\  & \Rightarrow {{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2}}}\text{=xy(y-x)} \\  & \Rightarrow \text{(x+y)(x-y)=xy(y-x)} \\  & \therefore \text{x+y=-xy} \\  & \Rightarrow \text{(1+x)y=-x} \\  & \Rightarrow \text{y=}\dfrac{\text{-x}}{\text{(1+x)}} \\ \end{align} $ 

Now, differentiating both sides of the equation with respect to  $ \text{x} $  gives

$\dfrac{\text{dy}}{\text{dx}}\text{=-}\dfrac{\text{(1+x)}\dfrac{\text{d}}{\text{dx}}\text{(x)-x}\dfrac{\text{d}}{\text{dx}}\text{(1+x)}}{{{\text{(1+x)}}^{\text{2}}}}\text{=-}\dfrac{\text{(1+x)-x}}{{{\text{(1+x)}}^{\text{2}}}} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=-}\dfrac{\text{1}}{{{\text{(1+x)}}^{\text{2}}}} $.


15. If  $ {{\mathbf{(x-a)}}^{\mathbf{2}}}\mathbf{+(y-b}{{\mathbf{)}}^{\mathbf{2}}}\mathbf{=}{{\mathbf{c}}^{\mathbf{2}}} $ , for some constant  $ \text{c}>0 $ , prove that  $ \dfrac{{{\left[ \mathbf{1+}{{\left( \dfrac{\mathbf{dy}}{\mathbf{dx}} \right)}^{\mathbf{2}}} \right]}^{\dfrac{\mathbf{3}}{\mathbf{2}}}}}{\dfrac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}} $  is a constant independent of  $ \text{a} $  and  $ \text{b} $ .

Ans: The given equation is  ${{\text{(x-a)}}^{\text{2}}}\text{+(y-b}{{\text{)}}^{\text{2}}}\text{=}{{\text{c}}^{\text{2}}} $  .

Differentiating both sides of the equation with respect to  $ \text{x} $  gives  $ \begin{align}& \dfrac{\text{d}}{\text{dx}}\text{= }\!\![\!\!\text{ (x-a}{{\text{)}}^{\text{2}}}\text{ }\!\!]\!\!\text{ +}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ (y-b}{{\text{)}}^{\text{2}}}\text{ }\!\!]\!\!\text{ =}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{c}}^{\text{2}}}\text{)} \\  & \Rightarrow \text{2(x-a)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(x-a)+2(y-b)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(y-b)=0} \\ & \Rightarrow \text{2(x-a)}\text{.1+2(y-b)}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=0} \\ \end{align} $ 

Hence,  $ \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{-(x-a)}}{\text{y-b}} $                                                  ..…... (1)

Again, differentiating both sides of the equation with respect to  $ \text{x} $  gives

 $ \begin{align}& \dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[ \dfrac{\text{-(x-a)}}{\text{y-b}} \right] \\ & \text{=-}\dfrac{\left[ \text{(y-b)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(x-a)-(x-a)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(y-b)} \right]}{{{\text{(y-b)}}^{\text{2}}}} \\ & \text{=-}\left[ \dfrac{\text{(y-b)-(x-a)}\text{.}\dfrac{\text{dy}}{\text{dx}}}{{{\text{(y-b)}}^{\text{2}}}} \right] \\  & \text{=-}\left[ \dfrac{\text{(y-b)-(x-a)}\text{.}\left\{ \dfrac{\text{-(x-a)}}{\text{y-b}} \right\}}{{{\text{(y-b)}}^{\text{2}}}} \right] \\  & \text{=-}\left[ \dfrac{{{\text{(y-b)}}^{\text{2}}}\text{+(x+a}{{\text{)}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{2}}}} \right] \\ \end{align} $ 

Therefore,

 $ {{\left[ \dfrac{\text{1+}{{\left( \dfrac{\text{dy}}{\text{dx}} \right)}^{\text{2}}}}{\dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}} \right]}^{\dfrac{\text{3}}{\text{2}}}}\text{=}\dfrac{{{\left[ \left( \text{1+}\dfrac{{{\text{(x-a)}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{2}}}} \right) \right]}^{\dfrac{\text{3}}{\text{2}}}}}{\text{-}\left[ \dfrac{{{\text{(y-a)}}^{\text{2}}}\text{+(x-a}{{\text{)}}^{\text{2}}}}{{{\text{(y-a)}}^{\text{3}}}} \right]}\text{=}\dfrac{{{\left[ \dfrac{{{\text{(y-b)}}^{\text{2}}}\text{+(x-a}{{\text{)}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{2}}}} \right]}^{\dfrac{\text{3}}{\text{2}}}}}{\text{-}\left[ \dfrac{{{\text{(y-a)}}^{\text{2}}}\text{+(x-a}{{\text{)}}^{\text{2}}}}{{{\text{(y-a)}}^{\text{3}}}} \right]}=\dfrac{{{\left[ \dfrac{{{\text{c}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{2}}}} \right]}^{\dfrac{\text{3}}{\text{2}}}}}{\text{-}\dfrac{{{\text{c}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{3}}}}} $ 

$\Rightarrow{{\left[\dfrac{\text{1+}{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}}{\dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}}\right]}^{\dfrac{\text{3}}{\text{2}}}}\text{=}\dfrac{\dfrac{{{\text{c}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{3}}}}}{\dfrac{{{\text{c}}^{\text{2}}}}{{{\text{(y-b)}}^{\text{3}}}}}=\text{-c} $ , is a constant, and is independent of  $ \text{a} $  and  $ \text{b} $ .


16. If  $ \text{cosy=xcos(a+y)} $ , with  $\text{cosa}\ne\text{}\!\!\pm\!\!\text{ 1} $ , prove that  $\dfrac{\mathbf{dy}}{\mathbf{dx}}\mathbf{=}\dfrac{\mathbf{co}{{\mathbf{s}}^{\mathbf{2}}}\mathbf{(a+y)}}{\mathbf{sina}} $ .

Ans: The given equation is  $ \text{cosy=xcos(a+y)} $ .

Then, differentiating both sides of the equation with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{d}}{\text{dx}}\text{}\!\![\!\!\text{cosy}\!\!]\!\!\text{=}\dfrac{\text{d}}{\text{dx}}\text{}\!\![\!\!\text{xcos(a+y)}\!\!]\!\!\text{}\\&\Rightarrow\text{-siny}\dfrac{\text{dy}}{\text{dx}}\text{=cos(a+y)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(x)+x}\text{.}\dfrac{\text{d}}{\text{dx}}\text{}\!\![\!\!\text{cos(a+y)}\!\!]\!\!\text{}\\&\Rightarrow\text{-siny}\dfrac{\text{dy}}{\text{dx}}\text{=cos(a+y)+x}\text{.}\!\![\!\!\text{-sin(a+y)}\!\!]\!\!\text{}\dfrac{\text{dy}}{\text{dx}} \\ \end{align} $ 

 $ \Rightarrow \text{ }\!\![\!\!\text{ xsin(a+y)-siny }\!\!]\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=cos(a+y)} $                                  …….. (1)

Since  $\text{cosy=xcos(a+y)}\Rightarrow\text{x=}\dfrac{\text{cosy}}{\text{cos(a+y)}} $ , so from the equation (1) gives

$\begin{align}&\left[\dfrac{\text{cosy}}{\text{cos(a+y)}}\text{.sin(a+y)-siny}\right]\dfrac{\text{dy}}{\text{dx}}\text{=cos(a+y)}\\&\Rightarrow\text{}\!\![\!\!\text{cosy}\text{.sin(a+y)-siny}\text{.cos(a+y)}\!\!]\!\!\text{}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=co}{{\text{s}}^{\text{2}}}\text{(a+y)}\\&\Rightarrow\text{sin(a+y-y)}\dfrac{\text{dy}}{\text{dx}}\text{=co}{{\text{s}}^{\text{2}}}\text{(a+y)} \\ \end{align} $ 

Hence, it has been proved that  $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{co}{{\text{s}}^{\text{2}}}\text{(a+y)}}{\text{sina}} $ .


17. If   $ \mathbf{x=a(cost+tsint)} $  and  $ \mathbf{y=a(sint-tcost)} $ , find  $ \dfrac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}} $ .

Ans: The given equations are

  $ \text{x=a(cost+tsint)} $                                            …… (1)

and  $ \text{y=a(sint-tcost)} $                                        …… (2)

Then, differentiating both sides of the equation (1) with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{dx}}{\text{dt}}\text{=a}\left[\text{-sint+sint}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(t)+t}\text{.}\dfrac{\text{d}}{\text{dt}}\text{(sint)}\right]\\&\text{=a}\left[ \text{-sint+sint+cost} \right]\text{=atcost} \\ \end{align} $ 

Again, differentiating both sides of the equation (2) with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{dy}}{\text{dt}}\text{=a}\text{.}\dfrac{\text{d}}{\text{dt}}\text{(sint-tcost)}\\&\text{a}\left[\text{cost-}\left\{\text{cost}\text{.}\dfrac{\text{d}}{\text{dt}}\text{(t)+t}\text{.}\dfrac{\text{d}}{\text{dt}}\text{(cost)}\right\}\right]\\&\text{a}\!\![\!\!\text{ cost- }\!\!\{\!\!\text{ cost-tsint }\!\!\}\!\!\text{  }\!\!]\!\!\text{=atsint}\\\end{align}$ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\left(\dfrac{\text{dy}}{\text{dt}}\right)}{\left( \dfrac{\text{dx}}{\text{dx}} \right)}\text{=}\dfrac{\text{atsint}}{\text{atcost}}\text{=tant}$ 

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\dfrac{\text{d}}{\text{dx}}\left(\dfrac{\text{dy}}{\text{dx}}\right)\text{=}\dfrac{\text{d}}{\text{dx}}\text{(tant)=se}{{\text{c}}^{\text{2}}}\text{t}\text{.}\dfrac{\text{dt}}{\text{dx}}\text{=se}{{\text{c}}^{\text{2}}}\text{t}\text{.}\dfrac{\text{1}}{\text{atcost}} $       

Hence,  $\dfrac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}\text{=}\dfrac{\text{se}{{\text{c}}^{\text{3}}}\text{(t)}}{\text{at}} $ .


18. If  $ \mathbf{f(x)=}{{\left| \mathbf{x} \right|}^{\mathbf{3}}} $ , show that  $ \mathbf{{{f}'}'}\left( \mathbf{x} \right) $  exists for all real  $ \text{x} $   and find it.

Ans:  Remember that, $\left|\text{x}\right|\text{=}\left\{\begin{align}&\text{x,if}\,\text{x}\ge\text{0}\\&\text{-x,if}\,\text{x0} \\ \end{align} \right\} $ 

Therefore, if  $ \text{x}\ge \text{0,} $  then  $ \text{ f(x)=}{{\left| \text{x} \right|}^{\text{3}}}\text{=}{{\text{x}}^{\text{3}}} $ .

Then,  $ \text{{f}'}\,\text{(x)=3}{{\text{x}}^{\text{2}}} $  .

Differentiating both sides with respect to  $ \text{x} $  gives

 $ \text{{{f}'}'}\,\text{(x)=6x} $ .

Now, if $\text{x0,}$then$\text{f(x)=}{{\left|\text{x}\right|}^{\text{3}}}\text{=(-}{{\text{x}}^{\text{3}}}\text{)=}{{\text{x}}^{\text{3}}} $ .

So,  $ \text{{f}'}\,\text{(x)=3}{{\text{x}}^{\text{2}}} $ .

Therefore, differentiating both sides with respect to  $ \text{x} $  gives

 $ \text{{{f}'}'}\,\text{(x)=6x} $ .

Hence, for  $ \text{f(x)=}{{\left| \text{x} \right|}^{\text{3}}}\text{,} $   $ \text{{{f}'}'}\left( \text{x} \right) $  exists for all real values of  $ \text{x} $  and is provided as

$\text{{{f}'}'(x)=}\left\{\begin{align}&\text{6x,if}\,\text{x}\ge\text{0}\\&\text{-6x,if}\,\text{x0} \\ \end{align} \right\} $


19. Using the fact that  $ \mathbf{sin(A+B)=sinAcosB+cosAsinB} $  and the differentiation, obtain the sum formula for cosines.

Ans:  The given sum formula is  $ \text{sin(A+B)=sinAcosB+cosAsinB} $ .

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\dfrac{\text{d}}{\text{dx}}\left[\text{sin(A+B)}\right]\text{=}\dfrac{\text{d}}{\text{dx}}\text{(sinAcosB)+}\dfrac{\text{d}}{\text{dx}}\text{(cosAsinB)} $ 

$\begin{align}&\Rightarrow\text{cos(A+B)}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(A+B)=cosB}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(sinA)+sinA}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(cosB)+sinB}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(cosA)}\\&\text{+cosA}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(sinB)}\\&\Rightarrow\text{cos(A+B)}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\text{(A+B)=cosB}\!\!\times\!\!\text{cosA}\dfrac{\text{d}}{\text{dx}}\text{+sinA(-sinB)}\dfrac{\text{dB}}{\text{dx}}\text{+sinB(-sinA)}\!\!\times\!\!\text{}\dfrac{\text{dA}}{\text{dx}}\\&\text{+cosAcosB}\dfrac{dB}{dx}\\&\Rightarrow\text{cos(A+B)}\left[\dfrac{\text{dA}}{\text{dx}}\text{+}\dfrac{\text{dB}}{\text{dx}}\right]\text{=(cosAcosB-sinAsinB)}\!\!\times\!\!\text{}\left[\dfrac{\text{dA}}{\text{dx}}\text{+}\dfrac{\text{dB}}{\text{dx}}\right]\\\end{align} $ 

Hence the required sum formula for cosines is  $ \text{cos(A+B)=cosAcosB-sinAsinB} $ .


20. Does there exist a function which is continuous everywhere but not differentiable at exactly two points?

Ans: Let take the function $\text{f}\left(\text{x}\right)=|\text{x}|+|\text{x}-1|$ 

Observe that, the function  $ \text{f} $  is continuous everywhere, but not differentiable at $ \text{x}=0 $  and  $ \text{x}=1 $ .


21.If $\mathbf{y=}\left|\begin{matrix}\mathbf{f}\left(\mathbf{x}\right)&\mathbf{g}\left(\mathbf{x} \right) & \mathbf{h}\left( \mathbf{x} \right)  \\\mathbf{l} & \mathbf{m} & \mathbf{n}  \\\mathbf{a} & \mathbf{b} & \mathbf{c}  \\\end{matrix} \right| $ , prove that$\dfrac{\mathbf{dy}}{\mathbf{dx}}\mathbf{=}\left|\begin{matrix}\mathbf{{f}'}\left(\mathbf{x} \right)&\mathbf{{g}'}\left(\mathbf{x}\right)&\mathbf{{h}'}\left(\mathbf{x} \right)  \\  \mathbf{l} & \mathbf{m} & \mathbf{n}  \\  \mathbf{a} & \mathbf{b} & \mathbf{c}  \\\end{matrix} \right|$  .

Ans:  The given function is  $ \text{y=}\left| \begin{align}  & \text{f(x)}\,\,\,\text{g(x)}\,\,\,\text{h(x)} \\  & \text{   l}\ \ \ \ \ \ \text{m    n} \\  & \text{   a       b    c  } \\ \end{align} \right| $ 

Evaluate the determinant.

 $ \text{y=(mc-nb)f(x)-(lc-na)g(x)+(lb-ma)h(x)} $ .

Now, differentiating both sides with respect to  $ \text{x} $  gives

 $ \begin{align}& \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ (mc-nb)f(x) }\!\!]\!\!\text{ -}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ (lc-na)g(x) }\!\!]\!\!\text{ +}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ (lb-ma)h(x) }\!\!]\!\!\text{ } \\ & \text{=(mc-nb)f(x)-(lc-na)g(x)+(lb-ma)h(x)} \\  & =\left| \begin{matrix}\text{f}'\left(\text{x}\right)&\text{g}'\left(\text{x}\right)&\text{h}'\left(\text{x} \right)  \\\text{l} & \text{m} & \text{n}  \\\text{a} & \text{b} & \text{c}  \\\end{matrix} \right| \\ \end{align} $ 

Hence,  $\dfrac{\text{dy}}{\text{dx}}\text{=}\left|\begin{matrix}\text{f}'\left(\text{x}\right)&\text{g }'\left( \text{x} \right) & \text{h }'\left( \text{x} \right)  \\\text{l} & \text{m} & \text{n}  \\\text{a} & \text{b} & \text{c}  \\\end{matrix} \right| $


22.If $\mathbf{y=}{{\mathbf{e}}^{\mathbf{aco}{{\mathbf{s}}^{\mathbf{-1}}}\mathbf{x}}}\text{, -1}\le \text{x}\le 1 $ , show that $\mathbf{(1-}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{)}\dfrac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}\mathbf{-x}\dfrac{\mathbf{dy}}{\mathbf{dx}}\mathbf{-}{{\mathbf{a}}^{\mathbf{2}}}\mathbf{y=0} $ .

Ans: The given equation is

$\text{y=}{{\text{e}}^{\text{aco}{{\text{s}}^{\text{-1}}}\text{x}}} $ .

Then take the logarithm on both sides of the equation.

$\begin{align}&\text{logy=aco}{{\text{s}}^{\text{-1}}}\text{xloge}\\&\Rightarrow\text{logy=aco}{{\text{s}}^{\text{-1}}}\text{x} \\ \end{align} $ 

Now, differentiating both sides with respect to  $ \text{x} $  gives

$\begin{align}&\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=ax}\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}\\&\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{-ax}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}} \\ \end{align} $ 

Therefore, squaring both sides of the equation gives

$\begin{align}&{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}\text{=}\dfrac{{{\text{a}}^{\text{2}}}{{\text{y}}^{\text{2}}}}{\text{1-}{{\text{x}}^{\text{2}}}}\\&\Rightarrow(\text{1-}{{\text{x}}^{\text{2}}}\text{)}{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}\text{=}{{\text{a}}^{\text{2}}}{{\text{y}}^{\text{2}}}\\&\Rightarrow\text{(1-}{{\text{x}}^{\text{2}}}\text{)}{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}\text{=}{{\text{a}}^{\text{2}}}{{\text{y}}^{\text{2}}} \\ \end{align} $ 

Again, differentiating both sides with respect to  $ \text{x} $  gives  $\begin{align}&{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}\dfrac{\text{d}}{\text{dx}}\text{(1-}{{\text{x}}^{\text{2}}}\text{)+(1-}{{\text{x}}^{\text{2}}}\text{)}\!\!\times\!\!\text{}\dfrac{\text{d}}{\text{dx}}\left[{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}\right]\text{=}{{\text{a}}^{\text{2}}}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{y}}^{\text{2}}}\text{)}\\&\Rightarrow{{\left(\dfrac{\text{dy}}{\text{dx}}\right)}^{\text{2}}}\text{(-2x)+(1-}{{\text{x}}^{\text{2}}}\text{)}\!\!\times\!\!\text{2}\dfrac{\text{dy}}{\text{dx}}\text{}\!\!\times\!\!\text{}\dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}{{\text{a}}^{\text{2}}}\text{}\!\!\times\!\!\text{2y}\!\!\times\!\!\text{}\dfrac{\text{dy}}{\text{dx}}\\&\Rightarrow\text{x}\dfrac{\text{dy}}{\text{dx}}\text{+(1-}{{\text{x}}^{\text{2}}}\text{)}\dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}{{\text{a}}^{\text{2}}}\text{}\!\!\times\!\!\text{ y} \\ \end{align} $

Hence, it is proved that  $\text{(1-}{{\text{x}}^{\text{2}}}\text{)}\dfrac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{-x}\dfrac{\text{dy}}{\text{dx}}\text{-}{{\text{a}}^{\text{2}}}\text{y=0} $ 


Conclusion

Class 12 Maths Chapter 5 Miscellaneous Exercise Solutions PDF is important for understanding various concepts thoroughly. Miscellaneous Chapter 5 Class 12 covers diverse problems that require the application of multiple formulas and techniques. It's crucial to concentrate on comprehending the fundamental ideas behind every question as opposed to merely learning the answers by heart. To complete this task, keep in mind that you must comprehend the theory underlying each idea, practise frequently, and consult solved examples.


Class 12 Maths Chapter 5: Exercises Breakdown

Exercise

Number of Questions

Exercise 5.1

34 Questions and Solutions

Exercise 5.2

10 Questions and Solutions

Exercise 5.3

15 Questions and Solutions

Exercise 5.4

10 Questions and Solutions

Exercise 5.5

18 Questions and Solutions

Exercise 5.6

11 Questions and Solutions

Exercise 5.7

17 Questions and Solutions


CBSE Class 12 Maths Chapter 5 Other Study Materials


Chapter-Specific NCERT Solutions for Class 12 Maths

Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


WhatsApp Banner

FAQs on CBSE Class 12 Maths Chapter 5 Continuity and Differentiability – NCERT Solutions Miscellaneous Exercise 2025-26

1. How should students approach the step-by-step solutions in NCERT Solutions for Class 12 Maths Chapter 5 Miscellaneous Exercise?

Students should start by carefully reading each question and attempt to solve using fundamental calculus concepts such as chain rule, continuity, and differentiability. Each step in the provided solutions follows the CBSE methodology, ensuring that every logical transition and formula used is clear. Reviewing each working and the reasoning behind it improves both understanding and exam performance.

2. What key concepts are frequently tested in the Miscellaneous Exercise of Continuity and Differentiability in Class 12 Maths?

The Miscellaneous Exercise covers a blend of continuity, types of discontinuities, criteria for differentiability, chain rule, differentiation of implicit and parametric functions, and the application of composite functions. Understanding how to determine when a function is continuous or differentiable and applying differentiation theorems is crucial for success in both board and entrance exams.

3. Why is using official NCERT Solutions recommended over unsourced answer keys for Chapter 5?

Official NCERT Solutions for Class 12 Maths Chapter 5 align strictly with the latest CBSE syllabus (2025–26) and marking scheme. They offer detailed, peer-reviewed, and stepwise answers ensuring conceptual accuracy. This alignment maximizes your exam readiness and reduces risk of errors compared to unsourced answer keys.

4. Can you explain how to check for both continuity and differentiability at a point as shown in stepwise NCERT Solutions?

To check continuity at x = a, ensure that lim x→a⁻ f(x) = lim x→a⁺ f(x) = f(a). For differentiability at x = a, confirm that the left-hand and right-hand derivatives exist and are equal at x = a. Stepwise NCERT Solutions typically show each check in sequence, highlighting all calculation and logic needed for full board marks.

5. What is the role of solved examples in mastering composite and implicit differentiation for Chapter 5?

Solved examples serve as models, clearly demonstrating the application of chain rule and derivatives of composite or implicit functions. They help students identify inner and outer functions and clarify common errors. Working through these examples builds deeper confidence and prevents mistakes in similar board or entrance exam questions.

6. How do students avoid common mistakes while solving continuity and differentiability problems in the Miscellaneous Exercise?

Students should always write out the definition of continuity or differentiability at the point in question, compute both left- and right-hand limits, and carefully follow the prescribed differentiation steps. Double-checking algebraic simplifications and ensuring all theorem conditions apply prevents calculation slips and conceptual errors.

7. Is the Miscellaneous Exercise in Chapter 5 necessary for students preparing for JEE and NEET as well as CBSE Boards?

Yes, the Miscellaneous Exercise is key for all competitive exams, as it contains mixed-concept, high-difficulty problems directly aligned with the depth required for CBSE, JEE, and NEET. Attempting every question, including proofs and HOTS, ensures well-rounded preparation and practice with application-based calculus problems.

8. What formulas must be revised for scoring in the Miscellaneous Exercise of Class 12 Maths Chapter 5?

Key formulas include:

  • Definition of continuity and types of discontinuity
  • Differentiability and its graphical implications
  • Chain rule for composite functions: if y = f(g(x)), then dy/dx = f'(g(x)) × g'(x)
  • Differentiation of implicit and parametric forms
  • Standard derivatives of trigonometric, logarithmic, and exponential functions
Regular revision of these formulas is crucial for full marks.

9. What is the primary difference between continuity and differentiability as tested in this chapter?

Continuity ensures the function has no breaks or jumps at a point, meaning the graph is unbroken. Differentiability means the function's derivative exists at that point and the tangent is well-defined. All differentiable functions are continuous, but not all continuous functions are differentiable (for example, at sharp corners).

10. How do step-by-step solutions in NCERT Solutions enhance board exam performance for Chapter 5?

Stepwise solutions teach students to structure their answers logically, just as required in CBSE marking schemes. This method helps gain all method and accuracy points, improves conceptual clarity, and makes error-spotting easier during revision. Following the NCERT format also familiarizes students with board-accepted language and solution flow.

11. How can a student verify their answers for difficult proof-based or mixed concept questions in Chapter 5?

Students should compare their complete logical steps against the NCERT Solutions, ensuring each part of their work matches in approach and calculation. Critical areas include checking correct application of theorems, accurate limit and derivative calculations, and boxed final answers. Re-examining each transition helps spot and correct gaps.

12. What strategies can students use to master multi-step or parameterized differentiation problems in this chapter?

Break down each parameterized or multi-step problem into smaller parts, solve derivatives with respect to the given parameter first, and then relate back to x through chain rule or substitution as shown in the solutions. Regular practice and checking intermediate steps put textbook theory into successful practice.

13. In which cases should students expect to use logarithmic differentiation in the Miscellaneous Exercise, and why?

Logarithmic differentiation is useful when differentiating functions where both the base and exponent are variables, such as y = xx or y = (sin x)sin x. Taking logarithms of both sides simplifies the exponents, making differentiation systematic and manageable for complex expressions.

14. How are continuity and differentiability tested graphically and algebraically in the CBSE exam context?

Graphical testing involves analyzing the smoothness and potential corners or cusps on a graph. Algebraically, students evaluate left- and right-hand limits, compute derivatives, and check their equality at the point of interest. Board exams may require explanation through both representations to ascertain understanding.

15. What are some misconceptions that students often have regarding continuity and differentiability in Class 12?

Key misconceptions include assuming all continuous functions are automatically differentiable, neglecting to check both sides' derivatives at a point, or believing functions with sharp corners are differentiable. To avoid these errors, always apply formal definitions and thorough calculations as shown in standard solutions.