Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Exercise 3.2 - Free PDF Download

The NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2 Matrices provides complete solutions to the problems in the Exercise. These NCERT Solutions are intended to assist students with the CBSE Class 12 board examination.

toc-symbolTable of Content
toggle-arrow


Students should thoroughly study this NCERT solution in order to solve all types of questions based on arithmetic progression. By completing these practice questions with the NCERT Maths Solutions Chapter 3 Exercise 3.2 Class 12, you will be better prepared to understand all of the different types of questions that may be asked in the Class 12 board exams.


Glance on NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3

  • The NCERT Solutions for Maths Class 12 Ex 3.2 focus on solidifying your understanding of arithmetic operations on matrices.

  • In Class 12 Ex 3.2 there are overall 22 Questions with 3 Short Answers and 19 Long Answers

  • This exercise likely covers addition, subtraction, multiplication by a scalar, and potentially matrix multiplication. 

  • Remember the properties that hold true for these operations, such as commutativity, associativity, and distributive property (for matrix addition and scalar multiplication).

  • There are problems related to finding the transpose of a matrix and solving systems of linear equations using matrices


Topics Covered in  Class 12 Maths Chapter 3 Exercise 3.2

  • Operations on Matrices

  • Addition and subtraction of matrices

  • Multiplication of a matrix by scalar

  • Properties of matrix addition and scalar multiplication

  • Commutativity

  • Associativity

  • Distributive property

  • Existence of additive identity and inverse.

  • Multiplication of matrices

  • Properties of multiplication of matrices

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 3 - Matrices

Exercise 3.2

1. Let $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$

Find each of the following

i. $\mathbf{A}+\mathbf{B}$

Ans: Adding the matrices

$\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll} 2 & 4 \\3 & 2\end{array}\right]+\left[\begin{array}{cc} 1 & 3 \\-2 & 5\end{array}\right]=\left[\begin{array}{ll} 3 & 7 \\1 & 7 \end{array}\right] $


ii. $\mathbf{A}-\mathbf{B}$

Ans: Subtracting the matrices

$A-B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]=\left[\begin{array}{cc} 1 & 1 \\ 5 & -3 \end{array}\right] $


iii. $\mathbf{3 A}-\mathbf{C}$

Ans: Subtracting the matrices

$\begin{aligned} &3 \mathrm{~A}-\mathrm{C}=3\left[\begin{array}{cc} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ &{\left[\begin{array}{cc} 6 & 12 \\ 9 & 6 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\3 & 4 \end{array}\right]=\left[\begin{array}{cc} 8 & 7 \\ 6 & 2 \end{array}\right]} \end{aligned}$


iv. AB

Ans: Matrix A has 2 columns. This number is equal to the number of rows in matrix B. Therefore, AB is defined as:

$\begin{aligned} &\mathrm{AB}=\left[\begin{array}{cc} 2 & 4 \\ 3 & 2\end{array}\right]\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right] \\ &{\left[\begin{array}{ll} 2(1)+4(-2) & 2(3)+4(5) \\ 3(1)+2(-2) & 3(3)+2(5) \end{array}\right]=\left[\begin{array}{cc} -6 & 26 \\ 1 & 19\end{array}\right]} \end{aligned} $


2. Compute the following:

i. $\left[\begin{array}{cc}\mathbf{a} & \mathbf{b} \\ -\mathbf{b} & \mathbf{a}\end{array}\right]+\left[\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{a}\end{array}\right]$

Ans: Computing,

$\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]+\left[\begin{array}{cc}a & b \\ b & a\end{array}\right]=\left[\begin{array}{cc}2 a & 2 b \\ 0 & 2 a\end{array}\right]$

ii. $\left[\begin{array}{cc}a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2}\end{array}\right]+\left[\begin{array}{cc}2 a b & 2 b c \\ -2 a c & -2 a b\end{array}\right]$

Ans: Computing,

$ \begin{aligned} &{\left[\begin{array}{cc} a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2} \end{array}\right]+\left[\begin{array}{cc} 2 a b & 2 b c \\ -2 a c & -2 a b \end{array}\right]=\left[\begin{array}{cc} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\ a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{array}\right]} \\ &{\left[\begin{array}{ll} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\ a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{array}\right]=\left[\begin{array}{ll} (a+b)^{2} & (b+c)^{2} \\ (a-c)^{2} & (a-b)^{2} \end{array}\right]} \end{aligned}$


iii. $\left[\begin{array}{ccc}-1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5\end{array}\right]+\left[\begin{array}{ccc}12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4\end{array}\right]$

Ans: Computing,

$ \left[\begin{array}{ccc} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{array}\right]+\left[\begin{array}{ccc} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4 \end{array}\right]=\left[\begin{array}{ccc} 11 & 11 & 0 \\ 16 & 5 & 21 \\ 5 & 10 & 9 \end{array}\right] $


iv. $\left[\begin{array}{cc}\cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{array}\right]+\left[\begin{array}{cc}\sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{array}\right]$

Ans: Computing,

$ \begin{aligned} &{\left[\begin{array}{cc} \cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x \end{array}\right]+\left[\begin{array}{cc} \sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x \end{array}\right]=\left[\begin{array}{cc} \cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\ \sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x \end{array}\right]} \\ &{\left[\begin{array}{ll} \cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\ \sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x \end{array}\right]=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right],\left(\because \sin ^{2} x+\cos ^{2} x=1\right)} \end{aligned} $


3. Compute the indicated products

i. $\left[\begin{array}{cc}\mathbf{a} & \mathbf{b} \\ -\mathbf{b} & \mathbf{a}\end{array}\right]\left[\begin{array}{cc}\mathbf{a} & -\mathbf{b} \\ \mathbf{b} & \mathbf{a}\end{array}\right]$

Ans: Given: $\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{b} & \mathrm{a}\end{array}\right]\left[\begin{array}{cc}\mathrm{a} & -\mathrm{b} \\ \mathrm{b} & \mathrm{a}\end{array}\right]$

$ \begin{aligned} {\left[\begin{array}{cc} a & b \\ -b & a \end{array}\right]\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] } &=\left[\begin{array}{cc} a(a)+b(b) & a(-b)+a(b) \\ -b(a)+b(a) & -b(-b)+a(a) \end{array}\right] \\ &=\left[\begin{array}{cc} a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2} \end{array}\right] \end{aligned} $


ii. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$

Ans: Given: $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$

$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]=\left[\begin{array}{lll}1(2) & 1(3) & 1(4) \\ 2(2) & 2(3) & 2(4) \\ 3(2) & 3(3) & 3(4)\end{array}\right]$

$ =\left[\begin{array}{ccc} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{array}\right] $


iii. $\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$

Ans: Given: $\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$

$ \begin{aligned} {\left[\begin{array}{cc} 1 & -2 \\ 2 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right] } &=\left[\begin{array}{lll} 1(1)-2(2) & 1(2)-2(3) & 1(3)-2(1) \\ 2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1) \end{array}\right] \\ &=\left[\begin{array}{ccc} -3 & -4 & 1 \\ 8 & 13 & 9 \end{array}\right] \end{aligned}$


iv. $\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right]$

Ans: Given: $\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right]$

$ \begin{aligned} {\left[\begin{array}{lll} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{array}\right]\left[\begin{array}{ccc} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{array}\right] } &=\left[\begin{array}{ccc} 2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\ 3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\ 4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5) \end{array}\right] \\ &=\left[\begin{array}{ccc} 14 & 0 & 42 \\ 18 & -1 & 56 \\ 22 & -2 & 70 \end{array}\right] \end{aligned} $


v. $\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$

Ans: Given: $\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$

$ \begin{aligned} {\left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 1 \\ -1 & 2 & 1 \end{array}\right] } &=\left[\begin{array}{ccc} 2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\ 3(1)+2(-1) & 3(0)+2(2) & 3(1)+2(1) \\ -1(1)+1(-1) & -1(0)+1(2) & -1(1)+1(1) \end{array}\right] \\ &=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0 \end{array}\right] \end{aligned}$


vi. $\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 1 & 0 \\ 3 & 1\end{array}\right]$

Ans: Given: $\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 1 & 0 \\ 3 & 1\end{array}\right]$

\[\begin{aligned} {\left[\begin{array}{ccc} 3 & -1 & 3 \\ -1 & 0 & 2 \end{array}\right]\left[\begin{array}{cc} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{array}\right] } &=\left[\begin{array}{cc} 3(2)-1(1)+3(3) & 3(-3)-1(0)+3(1) \\ -1(2)+0(1)+2(3) & -1(-3)+0(0)+2(1) \end{array}\right] \\ &=\left[\begin{array}{cc} 14 & -6 \\ 4 & 5 \end{array}\right] \end{aligned}\]

4. If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & 1 & 2 \\ 4 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$, then Compute $(A+B)$ and $(B-C)$. Also verify that $A+(B-C)=(A+B)-C$

Ans:

Computing $(\mathrm{A}+\mathrm{B})=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]+\left[\begin{array}{ccc}3 & 1 & 2 \\ 4 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4\end{array}\right]$

Computing $(B-C)=\left[\begin{array}{ccc}3 & 1 & 2 \\ 4 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]-\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}-1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0\end{array}\right]$

To verify $\mathrm{A}+(\mathrm{B}-\mathrm{C})=(\mathrm{A}+\mathrm{B})-\mathrm{C}$,

We calculate $\mathrm{A}+(\mathrm{B}-\mathrm{C})$ and $(\mathrm{A}+\mathrm{B})-\mathrm{C}$ first, and then check that $\mathrm{LHS}=\mathrm{RHS}$

Computing $A+(B-C)$

$ \left[\begin{array}{ccc} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{array}\right]+\left[\begin{array}{ccc} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{array}\right] \text {, and } $ Computing $(A+B)-C$ $\left[\begin{array}{ccc} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{array}\right]-\left[\begin{array}{ccc} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{array}\right] $

Hence, we have verified that $A+(B-C)=(A+B)-C$.

5. If $\mathbf{A}=\left[\begin{array}{ccc}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{array}\right]$ then calculate $\mathbf{3 A}-\mathbf{5}$ 

Ans: Evaluating $3 \mathrm{~A}-5 \mathrm{~B}$, ${\left[\begin{array}{ccc}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{array}\right]-5\left[\begin{array}{ccc}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{array}\right]=\left[\begin{array}{lll}2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2\end{array}\right]-\left[\begin{array}{lll}2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2\end{array}\right] }$

$=\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$


6. Simplify $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$

Ans: Simplifying $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$

$ \begin{aligned} &\Rightarrow\left[\begin{array}{cc} \cos ^{2} \theta & \cos \theta \sin \theta \\ -\sin \theta \cos \theta & \cos ^{2} \theta \end{array}\right]+\left[\begin{array}{cc} \sin ^{2} \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta \end{array}\right] \\ &\Rightarrow\left[\begin{array}{cc} \cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\ -\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta \end{array}\right] \end{aligned} $

$ \Rightarrow\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \quad\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right) $

7. Find $\mathrm{X}$ and $\mathrm{Y}$, if

i. $\mathbf{X}+\mathbf{Y}=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $\mathbf{X}-\mathbf{Y}=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$

Ans: Given:

$ \begin{aligned} &X+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right] \ldots(1) \\ &X-Y=\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right] \ldots(2) \end{aligned} $ Adding these two equations, we get $ 2 X=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]+\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right] $ $ \begin{aligned} &2 X=\left[\begin{array}{cc} 10 & 0 \\ 2 & 8 \end{array}\right] \\ &X=\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right] \end{aligned} $ Putting $X$ in (1) $ \begin{aligned} &{\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right] Y=\left[\begin{array}{ll} 7-5 & 0-0 \\ 2-1 & 5-4 \end{array}\right]} \\ &Y=\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right] \end{aligned} $


ii. $2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $3 \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{cc}2 & -2 \\ -1 & 5\end{array}\right]:$

Ans: Given:

$\begin{aligned} &2 X+3 Y=\left[\begin{array}{cc} 2 & 3 \\ 4 & 0 \end{array}\right] \ldots(1) \\ &3 X+2 Y=\left[\begin{array}{cc} 2 & -2 \\ -1 & 5 \end{array}\right] \ldots \end{aligned} $ Multiplying (1) with 2, we have $4 X+6 Y=\left[\begin{array}{ll}4 & 6 \\ 8 & 0\end{array}\right] \ldots(3)$ Multiplying (2) with 3, we have $9 X+6 Y=\left[\begin{array}{cc} 6 & -6 \\ -3 & 15 \end{array}\right] \ldots(4) $ From (3) and (4), we have $-5 X=\left[\begin{array}{cc}4-6 & 6-(-6) \\ 8-(-3) & 0-15\end{array}\right] \therefore X=\left[\begin{array}{cc}\frac{2}{5} & -\frac{12}{5} \\ -\frac{11}{5} & 3\end{array}\right]$ Putting $\mathrm{X}$ in (1) $ 2\left[\begin{array}{cc} \frac{2}{5} & -\frac{12}{5} \\ -\frac{11}{5} & 3 \end{array}\right]+3 \mathrm{Y}=\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] 3 \mathrm{Y}=\left[\begin{array}{cc} \frac{6}{5} & \frac{39}{5} \\ \frac{42}{5} & -6 \end{array}\right] $ $ \therefore \mathrm{Y}=\left[\begin{array}{cc} \frac{2}{5} & \frac{13}{5} \\ \frac{14}{5} & -2 \end{array}\right] $


8. Find $X$, if $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$

Ans: Given:

$2 \mathrm{X}+\mathrm{Y}=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$, where $\mathrm{Y}=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$

$2 \mathrm{X}+\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right] 2 \mathrm{X}=\left[\begin{array}{cc}1-3 & 0-2 \\ -3-1 & 2-4\end{array}\right]$

$\therefore \mathrm{X}=\left[\begin{array}{rr}-1 & -1 \\ -2 & -1\end{array}\right]$


9. Find $x$ and $y$, if $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Ans: Given: $2\left[\begin{array}{ll}1 & 3 \\ 0 & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$ $\Rightarrow\left[\begin{array}{cc}2 & 6 \\ 0 & 2 \mathrm{x}\end{array}\right]+\left[\begin{array}{cc}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 6 \\ 1 & 8\end{array}\right] \Rightarrow\left[\begin{array}{cc}2+\mathrm{y} & 6+0 \\ 0+1 & 2 \mathrm{x}+2\end{array}\right]=\left[\begin{array}{cc}5 & 6 \\ 1 & 8\end{array}\right]$

Comparing the corresponding elements of these two matrices, we have:

$\begin{aligned} &2+y=5 \Rightarrow y=3 \\ &2 x+2=8 \Rightarrow x=3 \\ &\therefore x=3 \text { and } y=3 \end{aligned} $


10. Solve the equation for $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and $t$ if: $2\left[\begin{array}{cc}x & z \\ y & t\end{array}\right]+3\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=3\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]$

Ans: Given:

$ 2\left[\begin{array}{cc} x & z \\ y & t \end{array}\right]+3\left[\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right]=3\left[\begin{array}{ll} 3 & 5 \\ 4 & 6 \end{array}\right]$ $ \begin{aligned} &{\left[\begin{array}{cc} 2 x & 2 z \\ 2 y & 2 t \end{array}\right]+\left[\begin{array}{cc} 3 & -3 \\ 0 & 6 \end{array}\right]=\left[\begin{array}{cc} 9 & 15 \\ 12 & 18 \end{array}\right]} \\ &{\left[\begin{array}{cc} 2 x+3 & 2 z-3 \\ 2 y & 2 t+6 \end{array}\right]=\left[\begin{array}{cc} 9 & 15 \\ 12 & 18 \end{array}\right]} \end{aligned} $

Comparing the corresponding elements of these two matrices, we get:

$ \begin{aligned} &2 x+3=9 \\ &\Rightarrow x=3 \end{aligned} $ $ \begin{aligned} &2 \mathrm{y}=12 \\ &\Rightarrow \mathrm{y}=6 \end{aligned} $ $2 z-3=15 $ $ \Rightarrow \mathrm{z}=9 $ $ 2 t+6=18 $ $ \Rightarrow \mathrm{t}=6 $ $ \therefore \mathrm{x}=3, \mathrm{y}=6, \mathrm{z}=9 \text { and } \mathrm{t}=6 \text {. } $


11. If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$, find values of $x$ and $y$.

Ans: Given:

$ \begin{aligned} &x\left[\begin{array}{l} 2 \\ 3 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 1 \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] \\ &{\left[\begin{array}{l} 2 x \\ 3 x \end{array}\right]+\left[\begin{array}{c} -y \\ y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right]} \\ &{\left[\begin{array}{l} 2 x-y \\ 3 x+y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right]} \end{aligned} $ Comparing the corresponding elements of these two matrices, we get $2 x-y=10$ and $3 x+y=5$


Adding these two equations, we have:

$ \begin{aligned} &5 \mathrm{x}=15 \\ &\Rightarrow \mathrm{x}=3 \end{aligned} $ Now, putting $x=3$ in any equation, we have: $ \begin{aligned} &\mathrm{y}=5-3 \mathrm{x} \\ &\Rightarrow \mathrm{y}=-4 \\ &\therefore \mathrm{x}=3 \text { and } \mathrm{y}=-4 \end{aligned} $

12. Given $3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$, find the values of $x, y, z$ and W.

Ans: Simplifying

$\left[\begin{array}{cc}3 x & 3 y \\ 3 z & 3 w\end{array}\right]=\left[\begin{array}{cc}x+4 & 6+y+x \\ -1+z+w & 2 w+3\end{array}\right]$ Comparing the corresponding elements of these two matrices, we get: $3 x=x+4$ $\Rightarrow x=2$ $ \begin{aligned} &3 y=6+x+y \\ &\Rightarrow y=4 \end{aligned} $ $ \begin{aligned} &3 w=2 w+3 \\ &\Rightarrow w=3 \end{aligned} $ $ 3 z=-1+z+w $ $ \begin{aligned} &\Rightarrow \mathrm{z}=1 \\ &\therefore \mathrm{x}=2, \mathrm{y}=4, \mathrm{z}=1 \text { and } \mathrm{w}=3 \end{aligned} $


13. If $\mathbf{F}(\mathbf{x})=\left[\begin{array}{ccc}\cos \mathbf{x} & -\sin \mathbf{x} & 0 \\ \sin \mathbf{x} & \cos \mathbf{x} & 0 \\ 0 & 0 & 1\end{array}\right]$, show that $\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})=\mathbf{F}(\mathbf{x}+\mathbf{y})$

Ans: To show $\mathrm{F}(\mathrm{x}) \mathrm{F}(\mathrm{y})=\mathrm{F}(\mathrm{x}+\mathrm{y})$,

We first calculate $\mathrm{F}(\mathrm{x}) \mathrm{F}(\mathrm{y})$ and $\mathrm{F}(\mathrm{x}+\mathrm{y})$, and check that both are equal LHS

$F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $F(y)=\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$ $F(x) F(y)=\left[\begin{array}{cccc}\cos x \cos y-\sin x \sin y & -\cos x \sin y-\sin x \cos y & 0 \\ \sin x \cos y+\cos x \sin y & -\sin x \sin y+\cos x \cos y & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ $F(x) F(y)=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \operatorname{cox}(x+y) & 0 \\ 0 & 0 & 1\end{array}\right]$

$ \begin{aligned} &F(x) F(y)=\left[\begin{array}{ccc} \cos x \cos y-\sin x \sin y & -\cos x \sin y-\sin x \cos y & 0 \\ \sin x \cos y+\cos x \sin y & -\sin x \sin y+\cos x \cos y & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &F(x) F(y)=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \operatorname{cox}(x+y) & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned} $


RHS

$ F(x+y)=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \operatorname{cox}(x+y) & 0 \\ 0 & 0 & 1 \end{array}\right] $

$\mathrm{LHS}=\mathrm{RHS}$, proved.

14. Show that:

i. $\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right] \neq\left[\begin{array}{cc}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]$

Ans: To show, we first calculate LHS and RHS

LHS

$ \begin{aligned} &{\left[\begin{array}{cc} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]=\left[\begin{array}{cc} 5(2)-1(3) & 5(1)-1(4) \\ 6(2)+7(3) & 6(1)+7(4) \end{array}\right]} \\ &{\left[\begin{array}{cc} 10-3 & 5-4 \\ 12+21 & 6+28 \end{array}\right]=\left[\begin{array}{cc} 7 & 1 \\ 33 & 34 \end{array}\right]} \end{aligned} $ RHS $ \begin{aligned} &{\left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{cc} 5 & -1 \\ 6 & 7 \end{array}\right]=\left[\begin{array}{ll} 2(5)+1(6) & 2(-1)+1(7) \\ 3(5)+4(6) & 3(-1)+4(7) \end{array}\right]} \\ &{\left[\begin{array}{cc} 10+6 & -2+7 \\ 15+24 & -3+28 \end{array}\right]=\left[\begin{array}{cc} 16 & 5 \\ 39 & 25 \end{array}\right]} \end{aligned} $

${\left[\begin{array}{cc}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right] }$ ${\left[\begin{array}{cc}10+6 & -2+ \\ 15+24 & -3+\end{array}\right.}$ $\therefore$ LHS $\neq$ RHS


ii. $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right] \neq\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$

Ans: To show, we first calculate LHS and RHS

LHS

$ \left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{ccc} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]=\left[\begin{array}{lll} 1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\ 0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\ 1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4) \end{array}\right] $


$=\left[\begin{array}{ccc} 5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{array}\right] $

RHS

$\begin{aligned} {\left[\begin{array}{ccc} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]}&\\=\left[\begin{array}{ccc} -1(1)+1(0)+0(1) & -1(2)+1(1)+0(1) & -1(3)+1(0)+0(0) \\ 0(1)-1(0)+1(1) & 0(2)-1(1)+1(1) & 0(3)-1(0)+1(0) \\ 2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0) \end{array}\right] \\ &\\=\left[\begin{array}{ccc} -1 & -1 & -3 \\ 1 & 0 & 0 \\ 6 & 11 & 6 \end{array}\right] \end{aligned}$


15. Find $A^{2}-5 A+6 I$ if $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$

Ans: We know that, $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}$

$ \begin{aligned} &{\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]=\left[\begin{array}{ll} 2(2)+0(2)+1(1) & 2(0)+0(1)+1(-1) & 2(1)+0(3)+1(0) \\ 2(2)+1(2)+3(1) & 2(0)+1(1)+3(-1) & 2(1)+1(3)+3(0) \\ 1(2)-1(2)+0(1) & 1(0)-1(1)+0(-1) & 1(1)-1(3)+0(0) \end{array}\right]} \\ &{\left[\begin{array}{lll} 4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1+0 & 1-3+0 \end{array}\right]=\left[\begin{array}{ccc} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{array}\right]} \end{aligned} $

Substituting value of $\mathrm{A}^{2}, \mathrm{~A}, \mathrm{I}$ in $\mathrm{A}^{2}-5 \mathrm{~A}+6 \mathrm{I}$

$ \Rightarrow\left[\begin{array}{ccc} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{array}\right]-5\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]+6\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] $


$\Rightarrow \begin{bmatrix} 5-10+6 &-1 &2-5 \\ 9-10&-2-5+6 & 5-15\\ -5+0 & -1+5 & -2-0+6 \end{bmatrix}\Rightarrow \begin{bmatrix} 1 & -1 &-3 \\ -1 &-1 & -10\\ -5& 4 & 4 \end{bmatrix}$


16. If  $\mathbf{A=\begin{bmatrix} 1 &0 & 2\\ 0&2 & 1\\ 2 & 0& 3 \end{bmatrix}},\text{Prove that}\; A^3-6A^2+7A+2I=0$

Ans: We know that, $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}$ and $\mathrm{A}^{3}=\mathrm{A}^{2} \times \mathrm{A}$ For $\mathrm{A}^{2}$,

$ \begin{aligned} &{\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right]=\left[\begin{array}{ll} 1(1)+0(0)+2(2) & 1(0)+0(2)+2(0) & 1(2)+0(1)+2(3) \\ 0(1)+2(0)+1(2) & 0(0)+2(2)+1(0) & 0(2)+2(1)+1(3) \\ 2(1)+0(0)+3(2) & 2(0)+0(2)+3(0) & 2(2)+0(1)+3(3) \end{array}\right]} \\ &{\left[\begin{array}{lll} 1+0+4 & 0+0+0 & 2+0+6 \\ 0+0+2 & 0+4+0 & 0+2+3 \\ 2+0+6 & 0+0+0 & 4+0+9 \end{array}\right]=\left[\begin{array}{ccc} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]} \end{aligned} $

For $\mathrm{A}^{3}$,

 \begin{aligned} &{\left[\begin{array}{ccc} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right]=\left[\begin{array}{cc} 5(1)+0(0)+8(2) & 5(0)+0(2)+8(0) & 5(2)+0(1)+8(3) \\ 2(1)+4(0)+5(2) & 2(0)+4(3)+5(0) & 2(2)+4(1)+5(3) \\ 8(1)+0(0)+13(2) & 8(0)+0(2)+13(0) & 8(2)+0(1)+13(3) \end{array}\right]} \\ &{\left[\begin{array}{ccc} 5+0+16 & 0+0+0 & 10+0+24 \\ 2+0+10 & 0+8+0 & 4+4+15 \\ 8+0+26 & 0+0+0 & 16+0+39 \end{array}\right]=\left[\begin{array}{ccc} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right]} \end{aligned}

Substituting value of $\mathrm{A}^{3}, \mathrm{~A}^{2}, \mathrm{~A}, \mathrm{I}$ in $\mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}=0$

$ \begin{aligned} &\Rightarrow\left[\begin{array}{ccc} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right]-6\left[\begin{array}{ccc} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]+7\left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right]+2\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &\Rightarrow\left[\begin{array}{lll} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right]-\left[\begin{array}{ccc} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{array}\right]+\left[\begin{array}{ccc} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{array}\right]+\left[\begin{array}{lll} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right] \\ &\Rightarrow\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \\ &\therefore \mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}=0 \end{aligned} $


17. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, find $k$ so that $A^{2}=k A-2 I$

Ans: We know that, $\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}$

$ \begin{aligned} {\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right] } &=\left[\begin{array}{ll} 3(3)-2(4) & 3(-2)-2(-2) \\ 4(3)-2(4) & 4(-2)-2(-2) \end{array}\right] \\ &=\left[\begin{array}{ll} 1 & -2 \\ 4 & -4 \end{array}\right] \end{aligned} $ Now $\mathrm{A}^{2}=\mathrm{k} \mathrm{A}-2 \mathrm{I}$ $ \begin{aligned} &\Rightarrow\left[\begin{array}{cc} 1 & -2 \\ 4 & -4 \end{array}\right]=\mathrm{k}\left[\begin{array}{cc} 3 & -2 \\ 4 & -2 \end{array}\right]-2\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\ &\Rightarrow\left[\begin{array}{cc} 1 & -2 \\ 4 & -4 \end{array}\right]=\left[\begin{array}{cc} 3 \mathrm{k}-2 & -2 \mathrm{k} \\ 4 \mathrm{k} & -2 \mathrm{k}-2 \end{array}\right] \end{aligned} $

Comparing the corresponding elements, we have:

Comparing the corresponding elements, we have:

$ \begin{aligned} &\Rightarrow 3 \mathrm{k}-2=1 \\ &\Rightarrow \mathrm{k}+1 \end{aligned} $

Thus, the value of $\mathrm{k}$ is 1 .

18. If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and $I$ is the identity matrix of order 2 , show that $\mathbf{I}+\mathbf{A}=(\mathbf{I}-\mathbf{A})\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

Ans: LHS

$ \mathrm{I}+\mathrm{A}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]+\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{array}\right] $ $ =\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right] $

RHS

$ \begin{aligned} &(\mathrm{I}-\mathrm{A})\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right]\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] \\ &\Rightarrow\left[\begin{array}{cc} \cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha \end{array}\right] \end{aligned} $

$ \begin{aligned} &\Rightarrow\left[\begin{array}{cc} 1-2 \sin ^{2} \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2} & -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\left(2 \cos ^{2} \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2} \\ -\left(2 \cos ^{2} \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} & 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2}+1-2 \sin ^{2} \frac{\alpha}{2} \end{array}\right] \\ &\Rightarrow\left[\begin{array}{cc} 1-2 \sin ^{2} \frac{\alpha}{2}+2 \sin ^{2} \frac{\alpha}{2} & -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\ -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} & 2 \sin ^{2} \frac{\alpha}{2}+1-2 \sin ^{2} \frac{\alpha}{2} \end{array}\right] \\ &\Rightarrow\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right] \end{aligned} $

We get LHS = RHS.

19. A trust fund has Rs30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of :

(a) Rs 1,800

Ans: Let Rs $x$ be invested in the first bond. Then, the sum of money invested in the second bond pays Rs $(30,000-\mathrm{x})$

It is given that the first bond pays $5 \%$ interest per year and the second bond pay $7 \%$ interest per year.

Therefore, in order to obtain an annual total interest of Rs 1,800 , we have:

$\Rightarrow\left[\begin{array}{ll}x & 30,000-x\end{array}\right]\left[\begin{array}{c}\frac{5}{100} \\ \frac{7}{100}\end{array}\right]=1,800$

$ \begin{aligned} &\Rightarrow \frac{5 x}{100}+\frac{7(30,000-x)}{100}=1,800 \\ &\Rightarrow 5 x+2,10,000-7 x=1,80,000 \\ &\Rightarrow 2 x=30,000 \\ &\Rightarrow x=15,000 \end{aligned} $

Thus, in order to obtain an annual total interest of Rs 1,800 , the trust fund should invest Rs 15,000 in the first bond and the remaining Rs 15,000 in the second bond.

(b) Rs 2,000

Ans: Let Rs $x$ be invested in the first bond. Then, the sum of money invested in the second bond pays Rs $(30,000-\mathrm{x})$

It is given that the first bond pays $5 \%$ interest per year and the second bond pay $7 \%$ interest per year.

Therefore, in order to obtain an annual total interest of Rs 2,000 , we have:

$\Rightarrow\left[\begin{array}{ll}x & 30,000-x\end{array}\right]\left[\begin{array}{c}\frac{5}{100} \\ \frac{7}{100}\end{array}\right]=2,000$

$\begin{aligned} &\Rightarrow \frac{5 x}{100}+\frac{7(30,000-x)}{100}=2,000 \\ &\Rightarrow 5 x+2,10,000-7 x=2,00,000 \\ &\Rightarrow 2 x=10,000 \\ &\Rightarrow x=5,000 \end{aligned} $

Thus, in order to obtain an annual total interest of Rs 2,000 , the trust fund should invest Rs 5,000 in the first bond and the remaining Rs 25,000 in the second bond.

20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs $\mathbf{4 0}$ each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Ans: The bookshop has 10 dozen chemistry books, 8 dozen physics books, and 10 dozen economics books. The selling prices of a chemistry book, a physics book, and an economics book are respectively given as Rs 80, Rs 60 and Rs 40 . The total amount of money that will be received from the sale of all these books can be represented in the form of a matrix as:

$ \begin{aligned} &\Rightarrow 12\left[\begin{array}{lll} 10 & 8 & 10 \end{array}\right]\left[\begin{array}{l} 80 \\ 60 \\ 40 \end{array}\right] \\ &\Rightarrow 12[10 \times 80+8 \times 60+10 \times 40] \\ &\Rightarrow 12(800+480+400) \\ &\Rightarrow 12(1680) \\ &\Rightarrow 20160 \end{aligned} $

Thus, the bookshop will receive Rs 20160 from the sale of all these books.

21. Assume $X, Y, Z, W$ and $P$ are the matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $\mathrm{p} \times \mathrm{k}$ respectively. The restriction on $\mathrm{n}, \mathrm{k}$ and $\mathrm{p}$ so that $\mathrm{PY}+\mathrm{WY}$ will be defined.

A. $k=3, p=n$

B. $k$ is arbitrary, $p=2$

C. $\mathbf{p}$ is arbitrary, $\mathbf{k}=\mathbf{2}$

D. $k=2, p=3$

Ans: The correct option is Option(A)

Matrices $P$ and $Y$ are of the orders $p \times k$ and $3 \times k$ respectively.

Therefore, matrix PY will be defined if $\mathrm{k}=3$.

Consequently, $P Y$ will be of the order $p \times k$.

Matrices $\mathrm{W}$ and $\mathrm{Y}$ are of the orders $\mathrm{n} \times 3$ and $3 \times \mathrm{k}$ respectively.

Since the number of columns in $\mathrm{W}$ is equal to the number of rows in $\mathrm{Y}$, matrix $\mathrm{WY}$ is well-defined and is of the order $\mathrm{n} \times \mathrm{k}$.

Matrices PY and WY can be added only when their orders are the same.

However, PY is of the order $\mathrm{p} \times \mathrm{k}$ and $\mathrm{WY}$ is of the order $\mathrm{n} \times \mathrm{k}$. Therefore. we must have $\mathrm{p}=\mathrm{n}$.

Thus, $\mathrm{k}=3$ and $\mathrm{p}=\mathrm{n}$, are the restrictions on $\mathrm{n}, \mathrm{k}$ and $\mathrm{p}$ so that $\mathrm{PY}+\mathrm{WY}$ will be defined.

22. Assume $X, Y, Z, W$ and $P$ are the matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$ respectively. If $n=p$, then the order of the matrix $7 X-5 Z$ is

A. $\mathbf{p} \times \mathbf{2}$

B. $2 \times n$

C. $\mathrm{n} \times 3$

D. $\mathbf{p} \times \mathbf{n}$

Ans: The correct answer is B.

Matrix $X$ is of the order $2 \times n$.

Therefore, matrix $7 \mathrm{X}$ is also of the same order.

Matrix $Z$ is of the order $2 \times p$ or $2 \times n$ (Because $n=p$ )

Therefore, matrix $5 \mathrm{Z}$ is also of the same order.

Now, both the matrices $7 \mathrm{X}$ and $5 \mathrm{Z}$ are of the order $2 \times \mathrm{n}$.

Thus, matrix $7 \mathrm{X}-5 \mathrm{Z}$ is well-defined and is of the order $2 \times \mathrm{n}$.


Conclusion

In Exercise 3.2 of Class 12 Maths Chapter 3 on Matrices, covere important concepts like types of matrices, operations on matrices, and properties associated with them. It's crucial to understand the addition, subtraction, and multiplication of matrices, as well as the properties such as commutativity and associativity that apply to these operations. Previous year question papers often include 2-3 questions from this section, making it vital to master these problems to score well in exams. Additionally, focusing on the types of matrices like row matrix, column matrix, square matrix, and identity matrix is essential for a clear understanding. Mastering Class 12 maths Ex 3.2 will strengthen your foundation in matrix algebra, which is fundamental in various fields including computer science, engineering, and physics. Ensure you grasp the operations thoroughly and can identify different types of matrices easily. This will pave the way for tackling more complex problems in the future.


Class 12 Maths Chapter 3: Exercises Breakdown

S.No.

Chapter 3 - Matrices Exercises in PDF Format

1

Class 12 Maths Chapter 3 Exercise 3.1 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

2

Class 12 Maths Chapter 3 Exercise 3.3 - 12 Questions & Solutions (4 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 3 Exercise 3.4 - 18 Questions & Solutions (18 Short Answers)

4

Class 12 Maths Chapter 3 Miscellaneous Exercise - 11 Questions & Solutions



Other Study Materials for CBSE Class 12 Maths Chapter 3 Matrices



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

1. Where can I find stepwise NCERT Solutions for Class 12 Maths Chapter 3 Matrices following the CBSE 2025–26 syllabus?

Official NCERT Solutions for Class 12 Maths Chapter 3 Matrices, with detailed stepwise explanations based on the latest CBSE 2025–26 pattern, are available in free PDF format on trusted educational portals like Vedantu. These solutions cover every intext and exercise question as per updated NCERT guidelines and the latest exam format.

2. How do I solve Class 12 Maths Chapter 3 Exercise 3.1 using the correct NCERT answer pattern?

To solve Exercise 3.1 of Class 12 Maths Chapter 3 Matrices, follow the stepwise NCERT approach by reading each question carefully, using the definition of matrices, and applying the correct row and column operations as structured in the textbook. The official solutions use precise NCERT answer format and include all calculations and reasoning expected in CBSE Board exams.

3. Are the NCERT Solutions for Class 12 Maths Chapter 3 Matrices by Vedantu and Tiwari Academy CBSE approved?

Yes, both Vedantu and Tiwari Academy provide NCERT Solutions that strictly follow the current CBSE 2025–26 syllabus and NCERT answer format. Their solutions for Chapter 3 - Matrices are carefully structured to align with the latest CBSE Board marking scheme and solution presentation protocols.

4. Can I download the Class 12 Maths Chapter 3 Matrices Solutions PDF in Hindi medium?

Yes, NCERT Solutions for Class 12 Maths Chapter 3 Matrices are available in both English and Hindi mediums. PDF downloads in Hindi following the CBSE-approved NCERT structure can be found on Vedantu and other official educational sites, ensuring complete coverage of every exercise question with correct stepwise answers.

5. What is the correct NCERT method to solve Miscellaneous Exercise of Class 12 Maths Chapter 3 Matrices?

The Miscellaneous Exercise in Chapter 3 Matrices requires using a combination of previously learned properties like matrix addition, scalar multiplication, and finding transpose or inverse where applicable. Solutions must be presented stepwise, exactly according to the NCERT answer key and CBSE 2025–26 marking scheme, ensuring all working and logic are shown.

6. How can I ensure my solutions to Matrices Class 12 problems are in line with the official NCERT marking scheme?

To match the official NCERT marking scheme, always present your answers in a sequential, stepwise manner as shown in the NCERT Solutions. Clearly mention every calculation, state the property or rule used, and organize your solution using the same structure recommended by CBSE Board for the 2025–26 exams.

7. Which properties of matrices are frequently tested in Class 12 Maths Chapter 3 NCERT intext and exercise questions?

Class 12 Maths Chapter 3 frequently tests properties such as matrix addition, multiplication, identity matrix, transpose, and the existence of inverses. The NCERT Solutions for each exercise include stepwise procedures for verifying these properties, following the CBSE-approved structure to secure full marks in Board exams.

8. Are solved examples in Class 12 Maths Chapter 3 NCERT Solutions useful for Board exam preparation?

Yes, all solved examples given in the NCERT Solutions are based on the latest CBSE syllabus, mirroring Board exam question patterns. They provide best-practice, stepwise explanations using official NCERT answer formatting that help clarify doubts and improve answer presentation as expected in the 2025–26 CBSE Board exams.

9. How do I check the correctness of my answers for Exercise 3.2 and 3.3 in Class 12 Maths Chapter 3?

Compare your stepwise solutions with the official NCERT Solutions for Exercises 3.2 and 3.3, available as free PDFs. Check that each step matches the NCERT answer format, all calculations are shown, and matrix properties are applied exactly as detailed in the CBSE Board marking guidelines.

10. Is it important to write statements and reasons in stepwise solutions for matrices as per CBSE?

Yes, CBSE Board exams require each matrix operation and property verification to be accompanied by brief statements or reasons, as modeled in the official NCERT Solutions. This clarity in stepwise explanation earns full marks and demonstrates proper understanding according to the 2025–26 syllabus guidelines.

11. What common mistakes should I avoid while writing NCERT Solutions for Class 12 Maths Chapter 3 Matrices?

Common errors include skipping steps, not stating matrix order, omitting matrix property justifications, or misapplying addition and multiplication rules. The official NCERT Solutions showcase the correct CBSE method with complete stepwise working, which should be strictly followed to avoid losing marks.

12. Are intext questions from Chapter 3 Matrices also included in the NCERT Solutions PDF?

Yes, comprehensive NCERT Solutions PDFs include all intext questions in addition to main exercise and miscellaneous questions, solved using detailed, stepwise, CBSE-approved format as per the 2025–26 Board exam guidelines.