NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions in Hindi in Hindi PDF Download
Download the Class 12 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 12, you have reached the right platform. The NCERT Solutions for Class 12 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 12 Maths in Hindi from our website at absolutely free of cost.
NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.
We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.
Access NCERT Solutions for Mathematics Chapter 2 – प्रतिलोम त्रिकोणमितीय फलन
प्रश्नावली 2.1
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए
1. \[\mathbf{{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)}\]
उत्तर: मान लीजिए कि, ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = y}}$
अतः ${\text{sin y = - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = - sin }}\left( {\dfrac{\pi}{{\text{6}}}} \right){\text{ = sin }}\left( {{\text{ - }}\dfrac{\pi}{{\text{6}}}} \right)$
हमें ज्ञात है कि ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]$ होता है और ${\text{sin }}\left( {{\text{ - }}\dfrac{\pi}{{\text{6}}}} \right){\text{ = - }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं |इसलिए, \[{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)\] का प्रमुख मान \[{\text{ - }}\dfrac{\pi}{{\text{6}}}\] हैं
2. \[{\mathbf{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}} \right)}\]
उत्तर: मान लीजिए कि, ${\cos ^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt 3 }}{{\text{2}}}} \right){\text{ = y}}$
अतः ${\text{sin y = }}\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}{\text{ = cos }}\left( {\dfrac{\pi}{{\text{6}}}} \right)$
हमें ज्ञात है कि ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]$ होता है और ${\text{sin }}\left( {{\text{ - }}\dfrac{\pi}{{\text{6}}}} \right){\text{ = - }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं |
इसलिए, \[{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}} \right)\] का प्रमुख मान \[\dfrac{\pi}{{\text{6}}}\] हैं
3. \[\mathbf{{\text{cose}}{{\text{c}}^{{\text{ - 1}}}}\left( 2 \right)}\]
उत्तर: मान लीजिए कि, ${\text{cosec}}{{\text{ }}^{{\text{ - 1}}}}\left( {\text{2}} \right){\text{ = y}}$
अतः ${\text{cosec y = 2 = cosec }}\left( {\dfrac{\pi}{{\text{6}}}} \right)$हमें ज्ञात है कि ${\text{cose}}{{\text{c}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]{\text{ - }}\left\{ {\text{0}} \right\}$ होता है और ${\text{cosec }}\left( {\dfrac{\pi}{{\text{6}}}} \right){\text{ = 2 }}$ हैं|
इसलिए, \[{\text{cose}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{2 }}} \right)\] का प्रमुख मान \[\dfrac{\pi}{{\text{6}}}\] हैं
4. \[\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\sqrt {\text{3}} } \right)}\]
उत्तर: मान लीजिए कि, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\sqrt {\text{3}} } \right){\text{ = y}}$
अतः ${\text{tan y = - }}\sqrt {\text{3}} {\text{ = - tan }}\left( {\dfrac{\pi}{{\text{3}}}} \right){\text{ = tan }}\left( {{\text{ - }}\dfrac{\pi}{{\text{3}}}} \right)$
हमें ज्ञात है कि ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]$ होता है और ${\text{tan }}\left( {{\text{ - }}\dfrac{\pi}{{\text{3}}}} \right){\text{ = - }}\sqrt {\text{3}} $ हैं
इसलिए, \[{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\sqrt {\text{3}} } \right)\] का प्रमुख मान \[{\text{ - }}\dfrac{\pi}{3}\] हैं
5. \[\mathbf{{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)}\]
उत्तर: मान लीजिए कि, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = y}}$
अतः ${\text{cos y = - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = - cos }}\left( {\dfrac{\pi}{{\text{3}}}} \right){\text{ = cos }}\left( {{{\pi - }}\dfrac{\pi}{{\text{3}}}} \right){\text{ = cos }}\left( {\dfrac{{{{2 \pi }}}}{{\text{3}}}} \right)$
हमें ज्ञात है कि ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]$ होता है और ${\text{cos }}\left( {{\text{ - }}\dfrac{{{{2 \pi }}}}{{\text{3}}}} \right){\text{ = - }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं |
इसलिए, \[{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)\] का प्रमुख मान \[\dfrac{{{{2\pi }}}}{3}\] हैं
6. \[\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - 1 }}} \right)}\]
उत्तर: मान लीजिए कि, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - 1}}} \right){\text{ = y}}$
अतः ${\text{tan y = - 1 = - tan }}\left( {\dfrac{\pi}{4}} \right){\text{ = tan }}\left( {{\text{ - }}\dfrac{\pi}{4}} \right)$
हमें ज्ञात है कि ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]$ होता है और ${\text{tan }}\left( {{\text{ - }}\dfrac{\pi}{{\text{4}}}} \right){\text{ = - 1 }}$ हैं |
इसलिए, \[{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - 1 }}} \right)\] का प्रमुख मान \[{\text{ - }}\dfrac{\pi}{4}\] हैं
7. \[\mathbf{{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{2}}}{{\sqrt {\text{3}} }}} \right)}\]
उत्तर: मान लीजिए कि, ${\text{se}}{{\text{c}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{2}}}{{\sqrt {\text{3}} }}} \right){\text{ = y}}$
अतः ${\text{sec y = }}\dfrac{{\text{2}}}{{\sqrt {\text{3}} }}{\text{ = sec }}\left( {\dfrac{\pi}{{\text{6}}}} \right)$
हमें ज्ञात है कि ${\text{se}}{{\text{c}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]{\text{ - }}\left\{ {\dfrac{\pi}{{\text{2}}}} \right\}$ होता है और ${\text{sec }}\left( {\dfrac{\pi}{{\text{6}}}} \right){\text{ = }}\dfrac{{\text{2}}}{{\sqrt {\text{3}} }}$ हैं
इसलिए, \[{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{2}}}{{\sqrt {\text{3}} }}} \right)\] का प्रमुख मान \[\dfrac{\pi}{{\text{6}}}\] हैं
8. \[\mathbf{{\text{co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right)}\]
उत्तर: मान लीजिए कि, ${\text{co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right){\text{ = y}}$
अतः ${\text{sin y = }}\sqrt {\text{3}} {\text{ = cot }}\left( {\dfrac{\pi}{{\text{6}}}} \right)$
हमें ज्ञात है कि ${\text{co}}{{\text{t}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]$ होता है और ${\text{cot }}\left( {\dfrac{\pi}{{\text{6}}}} \right){\text{ = }}\sqrt {\text{3}} $ हैं |
इसलिए, \[{\text{co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right)\] का प्रमुख मान \[\dfrac{\pi}{{\text{6}}}\] हैं
9. \[\mathbf{{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}} \right)}\]
उत्तर: मान लीजिए कि, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}} \right){\text{ = y}}$
अतः ${\text{cos y = - }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}{\text{ = - cos }}\left( {\dfrac{\pi}{{\text{4}}}} \right){\text{ = cos }}\left( {{{\pi - }}\dfrac{\pi}{{\text{4}}}} \right){\text{ = cos }}\left( {\dfrac{{{{3\pi }}}}{{\text{4}}}} \right)$
हमें ज्ञात है कि ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{{0 , \pi }}} \right]$ होता है और ${\text{cos }}\left( {\dfrac{{{{3\pi }}}}{{\text{4}}}} \right){\text{ = - }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}$ हैं |
इसलिए, \[{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}} \right)\] का प्रमुख मान \[\dfrac{{{{3\pi }}}}{{\text{4}}}\] हैं
10. \[\mathbf{{\text{cose}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - }}\sqrt {\text{2}} } \right)}\]
उत्तर: मान लीजिए कि, ${\text{cose}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - }}\sqrt {\text{2}} } \right){\text{ = y}}$
अतः ${\text{cosec y = - }}\sqrt {\text{2}} {\text{ = - cosec }}\left( {\dfrac{\pi}{{\text{4}}}} \right){\text{ = cosec }}\left( {{\text{ - }}\dfrac{\pi}{{\text{4}}}} \right)$
हमें ज्ञात है कि ${\text{cose}}{{\text{c}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]{\text{ - }}\left\{ {\text{0}} \right\}$ होता है और ${\text{cosec }}\left( {{\text{ - }}\dfrac{\pi}{{\text{4}}}} \right){\text{ = - }}\sqrt {\text{2}} $ हैं |
इसलिए, \[{\text{cose}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - }}\sqrt {\text{2}} } \right)\] का प्रमुख मान \[\dfrac{\pi}{4}\] हैं
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए
11. $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\text{1}} \right){\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ + si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)}$
उत्तर: मान लीजिए कि, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\text{1}} \right){\text{ = x }}$
अतः ${\text{tan x = 1 = tan }}\left( {\dfrac{\pi}{{\text{4}}}} \right)$
हमें ज्ञात है कि ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left( {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right)$ होता है और ${\text{tan }}\left( {\dfrac{\pi}{{\text{4}}}} \right){\text{ = 1 }}$ हैं |
इसलिए, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\text{1}} \right){\text{ = }}\dfrac{\pi}{{\text{4}}}{\text{ }}$
मान लीजिए कि, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = y }}$
अतः ${\text{cos y = - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = - cos }}\left( {\dfrac{\pi}{{\text{3}}}} \right){\text{ = - cos }}\left( {{{\pi - }}\dfrac{\pi}{{\text{3}}}} \right){\text{ = cos }}\left( {\dfrac{{{{2\pi }}}}{{\text{3}}}} \right)$
हमें ज्ञात है कि ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]$ होता है और ${\text{cos }}\left( {\dfrac{{{{2\pi }}}}{{\text{3}}}} \right){\text{ = - }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं |
इसलिए, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = }}\dfrac{{{{2\pi }}}}{{\text{3}}}{\text{ }}$
मान लीजिए कि, ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = z }}$
अतः ${\text{sin z = - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = - sin }}\left( {\dfrac{\pi}{{\text{6}}}} \right){\text{ = sin }}\left( {{\text{ - }}\dfrac{\pi}{{\text{6}}}} \right)$
हमें ज्ञात है कि ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left( {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right)$ होता है और ${\text{sin }}\left( {{\text{ - }}\dfrac{\pi}{{\text{6}}}} \right){\text{ = - }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं |
इसलिए, ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = - }}\dfrac{\pi}{{\text{6}}}{\text{ }}$
अब, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\text{1}} \right){\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ + si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)$ ${\text{ = }}\dfrac{\pi}{{\text{4}}}{\text{ + }}\dfrac{{{{2\pi }}}}{{\text{3}}}{\text{ - }}\dfrac{\pi}{{\text{6}}}$
${\text{ = }}\dfrac{{{{3\pi + 8\pi - 2\pi }}}}{{{\text{12}}}}$
${\text{ = }}\dfrac{{{{9\pi}}}}{{{\text{12}}}}{\text{ = }}\dfrac{{{{3\pi}}}}{{\text{4}}}$
12. $\mathbf{{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ + 2si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)}$
उत्तर: मान लीजिए कि, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = x }}$
अतः ${\text{cos x = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = cos }}\left( {\dfrac{\pi}{{\text{3}}}} \right)$
हमें ज्ञात है कि ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]$ होता है और ${\text{cos }}\left( {\dfrac{\pi}{{\text{3}}}} \right){\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं
इसलिए, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = }}\dfrac{\pi}{{\text{3}}}{\text{ }}$
मान लीजिए कि, ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = y }}$
अतः ${\text{sin y = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = sin }}\left( {\dfrac{\pi}{{\text{6}}}} \right)$
हमें ज्ञात है कि ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left( {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right)$ होता है और ${\text{sin }}\left( {\dfrac{\pi}{{\text{6}}}} \right){\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}$ हैं |
इसलिए, ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = }}\dfrac{\pi}{{\text{6}}}{\text{ }}$
अब, ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ + 2si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)$ ${\text{ = }}\dfrac{\pi}{{\text{3}}}{\text{ + 2 X }}\dfrac{\pi}{{\text{6}}}$
${\text{ = }}\dfrac{\pi}{{\text{3}}}{\text{ + }}\dfrac{\pi}{{\text{3}}}{\text{ = }}\dfrac{{{{2\pi }}}}{{\text{3}}}$
13. यदि $\mathbf{{\text{si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x = y}}}$, तो
$\mathbf{{\text{0}} \leqslant {\text{y}} \leqslant \pi}$
$ \mathbf{- \;\dfrac{\pi}{{\text{2}}} \leqslant {\text{y}} \leqslant \dfrac{\pi}{{\text{2}}}}$
$\mathbf{{{0 < y < \pi }}}$
$\mathbf{{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{ < y < }}\dfrac{\pi}{{\text{2}}}}$
उत्तर: हमें ज्ञात है कि ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left( {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right)$ होता है
इसलिए, $ - \;\dfrac{\pi}{{\text{2}}} \leqslant {\text{y}} \leqslant \dfrac{\pi}{{\text{2}}}$
अतः विकल्प (B ) सही उत्तर हैं |
14. $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right){\text{ - se}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - 2}}} \right)}$ का मान बराबर है
$\mathbf{\pi}$
$\mathbf{{\text{ - }}\;\dfrac{\pi}{{\text{3}}}}$
$\mathbf{\dfrac{\pi}{3}}$
$\mathbf{\dfrac{{{{2\pi }}}}{3}}$
उत्तर: दिया गया है, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right){\text{ - se}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - 2}}} \right)$
मान लीजिए कि, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right){\text{ = x }}$
अतः ${\text{tan x = }}\sqrt {\text{3}} {\text{ = tan }}\left( {\dfrac{\pi}{{\text{3}}}} \right)$
हमें ज्ञात है कि ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]$ होता है और ${\text{tan }}\left( {\dfrac{\pi}{{\text{3}}}} \right){\text{ = }}\sqrt {\text{3}} $ हैं |
इसलिए, \[{\tan ^{{\text{ - 1}}}}\left( {\sqrt 3 } \right){\text{ = }}\dfrac{\pi}{{\text{3}}}{\text{ }}\]
मान लीजिए कि, ${\text{se}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - 2}}} \right){\text{ = y }}$
अतः ${\text{sin y = - 2 = - sec }}\left( {\dfrac{\pi}{{\text{3}}}} \right){\text{ = sec }}\left( {{{\pi - }}\dfrac{\pi}{{\text{3}}}} \right){\text{ = sec }}\left( {\dfrac{{{{2\pi }}}}{{\text{3}}}} \right)$
हमें ज्ञात है कि ${\text{sec}}{{\text{ }}^{{\text{ - 1}}}}$ कि प्रमुख शाखा का परिसर $\left[ {{0, \pi }} \right]{\text{ - }}\left\{ {\dfrac{\pi}{{\text{2}}}} \right\}$ होता है और ${\text{sec }}\left( {\dfrac{{{{2\pi }}}}{{\text{3}}}} \right){\text{ = - 2 }}$ हैं
इसलिए, ${\text{se}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - 2}}} \right){\text{ = }}\dfrac{{{{2\pi }}}}{{\text{3}}}{\text{ }}$
अब, ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\text{3}} } \right){\text{ - se}}{{\text{c}}^{{\text{ - 1}}}}\left( {{\text{ - 2}}} \right)$${\text{ = }}\dfrac{\pi}{{\text{3}}}{\text{ - }}\dfrac{{{{2\pi }}}}{{\text{3}}}{\text{ = - }}\dfrac{\pi}{{\text{3}}}$
अत: विकल्प (B) सही हैं |
प्रश्नावली 2.2
निम्नलिखित को सिद्ध कीजिए
1. $\mathbf{{\text{3si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{3x - 4}}{{\text{x}}^{\text{3}}}} \right){\text{, x}}\; \in \;\;\left[ {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{,}}\dfrac{{\text{1}}}{{\text{2}}}} \right]}$
उत्तर: ${{x = sin \theta }}$
$ \Rightarrow {\text{ si}}{{\text{n}}^{{\text{ - 1}}}}{{x = \theta }}$
${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{3x - 4}}{{\text{x}}^{\text{3}}}} \right){\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{3sin x - 4si}}{{\text{n}}^{\text{3}}}{\text{ x}}} \right)$
$ \Rightarrow {\text{ si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{{sin 3\theta }}} \right)$
$ \Rightarrow {\text{ 3}}\theta $
$ \Rightarrow {\text{ 3 si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
2. $\mathbf{{\text{3co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{4}}{{\text{x}}^{\text{3}}}{\text{ - 3x}}} \right){\text{, x}}\; \in \;\;\left[ {\dfrac{{\text{1}}}{{\text{2}}}{\text{, 1 }}} \right]}$
उत्तर: ${{x = cos }}\theta$
$ \Rightarrow {\text{ co}}{{\text{s}}^{{\text{ - 1}}}}{{x = \theta }}$
${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{4}}{{\text{x}}^{\text{3}}}{\text{ - 3x}}} \right){\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{4 co}}{{\text{s}}^{\text{3}}}{{ \theta - 3 cos \theta }}} \right)$
$ \Rightarrow {\text{ co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{{cos 3\theta }}} \right)$
$ \Rightarrow {\text{ 3}}\theta $
$ \Rightarrow {\text{ 3 co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}$
3. $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{2}}}{{{\text{11}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{7}}}{{{\text{24}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}}$
उत्तर: $ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{2}}}{{{\text{11}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{7}}}{{{\text{24}}}}$
$ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{{\text{2}}}{{{\text{11}}}}{\text{ + }}\dfrac{{\text{7}}}{{{\text{24}}}}}}{{{\text{1 - }}\dfrac{{\text{2}}}{{{\text{11}}}}{\text{ }}{\text{. }}\dfrac{{\text{7}}}{{{\text{24}}}}}}$
$ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{{{\text{48 + 77}}}}{{{{11 \times 24 }}}}}}{{\dfrac{{{{11 \times 24 - 14}}}}{{{{11 \times24 }}}}}}$
$ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{48 + 77}}}}{{{\text{264 - 14}}}}$${\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{125}}}}{{{\text{250 }}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}$
4: $\mathbf{{\text{2ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{7}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{31}}}}{{{\text{17}}}}}$
उत्तर: $ \Rightarrow 2\;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{1}{2}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{1}{7}$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2}}{\text{.}}\dfrac{{\text{1}}}{{\text{2}}}}}{{{\text{1 - }}{{\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)}^{\text{2}}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{7}}}$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{1}{{\left( {\dfrac{3}{4}} \right)}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{7}}}$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{4}{3}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{7}}}$
$ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{4}{3}{\text{ + }}\dfrac{1}{7}}}{{{\text{1 - }}\dfrac{4}{3}{\text{ }}{\text{. }}\dfrac{1}{7}}}$
$ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{{{\text{28 + 3}}}}{{{\text{21 }}}}}}{{\dfrac{{{\text{21 - 4}}}}{{{\text{21 }}}}}}$
$ \Rightarrow {\text{ ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{31}}}}{{17}}$
निम्नलिखित फलनों को सरलतम रूप में लिखिए
5: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} {\text{ - 1}}}}{{\text{x}}}{\text{, x}} \ne {\text{0 }}}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} {\text{ - 1}}}}{{\text{x}}}{\text{,x}} \ne {\text{0}}$
${{x = tan\theta }} \Rightarrow {{\theta = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
$\therefore {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} {\text{ - 1}}}}{{\text{x}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{\text{1 + ta}}{{\text{n}}^{\text{2}}}{{\theta }}} {\text{ - 1}}}}{{{{tan\theta }}}}$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{{(sec \theta - 1)}}}}{{{{tan\theta }}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{{(1 - cos\theta )}}}}{{{{sin\theta }}}}$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2si}}{{\text{n}}^{\text{2}}}\dfrac{{{\theta }}}{{\text{2}}}}}{{{\text{2sin}}\dfrac{{{\theta }}}{{\text{2}}}{\text{cos}}\dfrac{{{\theta }}}{{\text{2}}}}}$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\dfrac{{{\theta }}}{{\text{2}}}} \right){\text{ = }}\dfrac{{{\theta }}}{{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
6: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }},\;\left| {{\text{ x }}} \right|{\text{ > 1}}}$
उत्तर: ${{x = cosec\theta }} \Rightarrow {{\theta = cose}}{{\text{c}}^{{\text{ - 1}}}}{\text{x}}$
$\begin{align} {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\sqrt {{\text{cose}}{{\text{c}}^{\text{2}}}{{\theta - 1}}} }} \hfill \\ {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{{{cot\theta }}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}{{(tan\theta )}} \hfill \\ {{ = \theta = cose}}{{\text{c}}^{{\text{ - 1}}}}{\text{x = }}\dfrac{\pi}{{\text{2}}}{\text{ - se}}{{\text{c}}^{{\text{ - 1}}}}{\text{x}} \hfill \\ \end{align} $
7: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\dfrac{{{\text{1 - cosx}}}}{{{\text{1 + cosx}}}}} {{ , 0 < x < \pi }}}$
उत्तर: $ \Rightarrow {\text{ ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\dfrac{{{\text{1 - cosx}}}}{{{\text{1 + cosx}}}}} = $${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{2si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}}}{{{\text{2co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}}}} \right)$
$ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{sin}}\dfrac{{\text{x}}}{{\text{2}}}}}{{{\text{cos}}\dfrac{{\text{x}}}{{\text{2}}}}}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\dfrac{{\text{x}}}{{\text{2}}}} \right)$
$ \Rightarrow \dfrac{{\text{x}}}{{\text{2}}}$
8: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{cos x - sin x}}}}{{{\text{cos x + sin x}}}}} \right)}$
उत्तर: $ \Rightarrow \;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{1 - }}\dfrac{{{\text{sin x}}}}{{{\text{cos x}}}}}}{{{\text{1 + }}\dfrac{{{\text{sin x}}}}{{{\text{cos x}}}}}}} \right)$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{1 - tan x}}}}{{{\text{1 + tan x}}}}} \right)$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\text{1}} \right){\text{ - ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan x}}} \right)$
$ \Rightarrow \dfrac{\pi}{{\text{4}}}{\text{ - x}}$
9: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} }}{\text{ , }}\left| {{\text{ x }}} \right|{\text{ < a}}}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} }}{\text{ , }}\left| {{\text{ x }}} \right|{\text{ < a}}$
$ \Rightarrow {\text{ ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} }}$
$ \Rightarrow {{x = a sin \theta }}$
$ \Rightarrow \dfrac{{\text{x}}}{{\text{a}}}{{ = sin \theta = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{x}}}{{\text{a}}}} \right)$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} }}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{{a sin \theta }}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{a}}^{\text{2}}}{\text{si}}{{\text{n}}^{\text{2}}}{{\theta }}} }}} \right)$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{{a sin \theta }}}}{{{\text{a}}\sqrt {{\text{1 - si}}{{\text{n}}^{\text{2}}}{{\theta }}} }}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{{a sin \theta }}}}{{{{a cos \theta }}}}$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{{(tan \theta ) = \theta = si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\text{a}}} $
10:$\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{3}}{{\text{a}}^{\text{2}}}{\text{x - }}{{\text{x}}^{\text{3}}}}}{{{{\text{a}}^{\text{3}}}{\text{ - 3a}}{{\text{x}}^{\text{2}}}}}} \right){\text{, a > 0 ; - }}\dfrac{{\text{a}}}{{\sqrt {\text{3}} }}{\text{ < x < }}\dfrac{{\text{a}}}{{\sqrt {\text{3}} }}}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{3}}{{\text{a}}^{\text{2}}}{\text{x - }}{{\text{x}}^{\text{3}}}}}{{{{\text{a}}^{\text{3}}}{\text{ - 3a}}{{\text{x}}^{\text{2}}}}}} \right)$
$ \Rightarrow {{x = a tan \theta }}$
$\Rightarrow \dfrac{{\text{x}}}{{\text{a}}}{{ = tan \theta }} \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\text{a}}}$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{3}}{{\text{a}}^{\text{2}}}{\text{x - }}{{\text{x}}^{\text{3}}}}}{{{{\text{a}}^{\text{3}}}{\text{ - 3a}}{{\text{x}}^{\text{2}}}}}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{3}}{{\text{a}}^{\text{2}}}{{.a tan \theta - }}{{\text{a}}^{\text{3}}}{\text{ta}}{{\text{n}}^{\text{3}}}{{\theta }}}}{{{{\text{a}}^{\text{3}}}{\text{ - 3a}}{\text{.}}{{\text{a}}^{\text{2}}}{\text{ta}}{{\text{n}}^{\text{2}}}{{\theta }}}}} \right)$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{3}}{{\text{a}}^{\text{3}}}{{tan \theta - }}{{\text{a}}^{\text{3}}}{\text{ta}}{{\text{n}}^{\text{3}}}{{\theta }}}}{{{{\text{a}}^{\text{3}}}{\text{ - 3}}{{\text{a}}^{\text{3}}}{\text{ta}}{{\text{n}}^{\text{2}}}{{\theta }}}}} \right)$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{{3 tan \theta - ta}}{{\text{n}}^{\text{3}}}{{\theta }}}}{{{\text{1 - 3ta}}{{\text{n}}^{\text{2}}}{{\theta }}}}} \right)$
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{{(tan 3\theta )}}$
$\Rightarrow {{3\theta }}$
$ \Rightarrow {\text{3 ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\text{a}}} $
निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए
11:\[\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{2 cos}}\left( {{\text{2 si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}} \right)} \right]}\]
उत्तर: \[{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{2 cos}}\left( {{\text{2 si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}} \right)} \right]\]
$\Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = x}}$
$ \Rightarrow {\text{sin x = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = sin }}\left( {\dfrac{\pi}{{\text{6}}}} \right)$
$ \Rightarrow \therefore {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{\pi}{{\text{6}}}$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{2 cos}}\left( {{\text{2 si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{2}}}} \right)} \right]{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{2 cos}}\left( {{\text{2 }}\left( {{\text{x}}\dfrac{\pi}{{\text{6}}}} \right)} \right)} \right]$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{2 cos}}\left( {\dfrac{\pi}{{\text{3}}}} \right)} \right]{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{2 x}}\dfrac{{\text{1}}}{{\text{2}}}} \right]$
$\Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{1 = }}\dfrac{\pi}{{\text{4}}}$
12: \[\mathbf{{\text{cot}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{a + co}}{{\text{t}}^{{\text{ - 1}}}}{\text{a}}} \right)}\]
उत्तर: \[{\text{cot}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{a + co}}{{\text{t}}^{{\text{ - 1}}}}{\text{a}}} \right)\]
$\cot\frac{\pi}{2} \;\;\;\;[\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2} ]=0$
13: \[\mathbf{{\text{tan}}\dfrac{{\text{1}}}{{\text{2}}}\left[ {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2x}}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - }}{{\text{y}}^{\text{2}}}}}{{{\text{1 + }}{{\text{y}}^{\text{2}}}}}} \right]{\text{ , }}\left| {{\text{ x }}} \right|{\text{ < 1 , y > 0 or xy < 1}}}\]
उत्तर: \[{\text{tan}}\dfrac{{\text{1}}}{{\text{2}}}\left[ {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2x}}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - }}{{\text{y}}^{\text{2}}}}}{{{\text{1 + }}{{\text{y}}^{\text{2}}}}}} \right]\]
${{x = tan \theta }}$
$ \Rightarrow {{\theta = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2x}}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}{\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{{2 tan \theta }}}}{{{\text{1 + ta}}{{\text{n}}^{\text{2}}}\theta }}} \right){\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{{sin 2\theta }}} \right)$
$ {{ = 2\theta = 2ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
$ {\text{y = tan}}\emptyset$
$ \Rightarrow \emptyset \;{\text{ = }}\;{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y}}$
$\therefore \;\;{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - }}{{\text{y}}^{\text{2}}}}}{{{\text{1 + }}{{\text{y}}^{\text{2}}}}}{\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{1 - tan}}{\emptyset ^{\text{2}}}}}{{{\text{1 + tan}}{\emptyset ^{\text{2}}}}}} \right){\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos2}}\emptyset } \right){\text{ = 2}}\emptyset$
$ {\text{ = 2ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y}} $
$\therefore \;\;{\text{tan}}\dfrac{{\text{1}}}{{\text{2}}}\left[ {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2x}}}}{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - }}{{\text{y}}^{\text{2}}}}}{{{\text{1 + }}{{\text{y}}^{\text{2}}}}}} \right]$
$ {\text{ = tan}}\dfrac{{\text{1}}}{{\text{2}}}\left[ {{\text{2 ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x + 2 ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y}}} \right]$
$ {\text{ = tan}}\left[ {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x + ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y}}} \right]$
$ {\text{ = tan}}\left[ {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{x + y}}}}{{{\text{1 - xy}}}}} \right)} \right]$
$=\left( {\frac{{{{x + y}}}}{{{{1 - xy}}}}} \right)$
14: $\mathbf{{\text{sin }}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ = 1}}}$
उत्तर: ${\text{sin }}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ = 1}}$
$\begin{align} \Rightarrow {\text{sin}}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}} \right){\text{ cos}}\left( {{\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ + cos}}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}} \right){\text{ sin}}\left( {{\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}} \right) \hfill \\ {\text{[ sin (A + B) = sin A cos B + cos A sin B ]}} \hfill \\ \dfrac{{\text{1}}}{{\text{5}}}{\text{X x + cos}}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}} \right){\text{sin}}\left( {{\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ = 1}} \hfill \\ \dfrac{{\text{x}}}{{\text{5}}}{\text{ + cos}}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}} \right){\text{sin }}\left( {{\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}} \right){{ = 1, \ldots \ldots \ldots }}{\text{.(1)}} \hfill \\ {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}{\text{ = y}} \hfill \\ {\text{sin y = }}\dfrac{{\text{1}}}{{\text{5}}} \Rightarrow {\text{cos y = }}\sqrt {{\text{ 1 - }}{{\left( {\dfrac{{\text{1}}}{{\text{5}}}} \right)}^{\text{2}}}} {\text{ = }}\dfrac{{{\text{2}}\sqrt {\text{6}} }}{{\text{5}}} \Rightarrow {\text{y = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{2}}\sqrt {\text{6}} }}{{\text{5}}}} \right) \hfill \\ \therefore \;\;{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}{\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{2}}\sqrt {\text{6}} }}{{\text{5}}}} \right){{ \ldots \ldots \ldots }}{\text{.(2)}} \hfill \\ {\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x = z}} \hfill \\ {\text{cosz = x}} \Rightarrow {\text{sinz = }}\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} \Rightarrow {\text{z = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} } \right) \hfill \\ \therefore \;\;{\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} } \right) \hfill \\ \end{align} $
समीकरण (1),(2) और (3)
$\dfrac{{\text{x}}}{{\text{5}}}{\text{ + cos }}\left( {{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{2}}\sqrt {\text{6}} }}{{\text{5}}}} \right)} \right){\text{sin }}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} } \right)} \right){\text{ = 1}}$
$\begin{align} \Rightarrow \dfrac{{\text{x}}}{{\text{5}}}{\text{ + }}\dfrac{{{\text{2}}\sqrt {\text{6}} }}{{\text{5}}}{\text{.}}\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} {\text{ = 1}} \hfill \\ \Rightarrow {\text{x + 2}}\sqrt {\text{6}} {\text{.}}\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} {\text{ = 5}} \hfill \\ \Rightarrow {\text{2}}\sqrt {\text{6}} {\text{.}}\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} {\text{ = 5 - x}} \hfill \\ \Rightarrow {\left( {{\text{2}}\sqrt {\text{6}} {\text{.}}\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} } \right)^{\text{2}}}{\text{ = }}{\left( {{\text{5 - x}}} \right)^{\text{2}}} \hfill \\ \Rightarrow \left( {\text{4}} \right)\left( {\text{6}} \right)\;\left( {{\text{1 - }}{{\text{x}}^{\text{2}}}} \right){\text{ = 25 + }}{{\text{x}}^{\text{2}}}{\text{ - 10x}} \hfill \\ \Rightarrow {\text{24 - 24}}{{\text{x}}^{\text{2}}}{\text{ = 25 + }}{{\text{x}}^{\text{2}}}{\text{ - 10x}} \hfill \\ \Rightarrow {\text{25}}{{\text{x}}^{\text{2}}}{\text{ - 10x + 1 = 0}} \hfill \\ \Rightarrow {\left( {{\text{5x - 1}}} \right)^{\text{2}}}{\text{ = 0}} \hfill \\ \Rightarrow {\text{5x - 1 = 0}} \hfill \\ \Rightarrow {\text{5x = 1}} \hfill \\ \Rightarrow {\text{x = }}\dfrac{{\text{1}}}{{\text{5}}} \hfill \\ \end{align} $
15: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - x}}}}{{{\text{x - 2}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{x + 1}}}}{{{\text{x + 2}}}}{\text{ = }}\dfrac{\pi}{{\text{4}}}}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - x}}}}{{{\text{x - 2}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{x + 1}}}}{{{\text{x + 2}}}}{\text{ = }}\dfrac{\pi}{{\text{4}}}$
$\begin{align} \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {\dfrac{{\dfrac{{{\text{x - 1}}}}{{{\text{x - 2}}}}{\text{ + }}\dfrac{{{\text{x + 1}}}}{{{\text{x + 2}}}}}}{{{\text{1 - }}\dfrac{{{\text{x - 1}}}}{{{\text{x - 2}}}}{\text{.}}\dfrac{{{\text{x + 1}}}}{{{\text{x + 2}}}}}}} \right]{\text{ = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \Rightarrow \left[ {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x + ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{x + y}}}}{{{\text{1 - xy}}}}} \right]{\text{ = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {\dfrac{{\left( {{\text{x - 1}}} \right)\left( {\;{\text{x + 2}}} \right)\left( {{\text{x + 1}}} \right)\left( {{\text{x - 2}}} \right)}}{{\left( {\;{\text{x + 2}}} \right)\left( {{\text{x - 2}}} \right)\left( {{\text{x - 1}}} \right)\left( {{\text{x + 1}}} \right)}}} \right]\;{\text{ = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \end{align} $
$\begin{align} \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {\dfrac{{\;{{\text{x}}^{\text{2}}}{\text{ + x - 2}}\;{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - x - 2}}}}{{{{\text{x}}^{\text{2}}}{\text{ - 4 - }}{{\text{x}}^{\text{2}}}{\text{ + 1}}}}} \right]{\text{ = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {\dfrac{{{\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 4}}}}{{{\text{ - 3}}}}} \right]{\text{ = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \end{align} $
$ \Rightarrow {\text{tan}}\left[ {{\text{tan}}\dfrac{{{\text{4 - 2}}{{\text{x}}^{\text{2}}}}}{{\text{3}}}} \right]{\text{ = tan}}\dfrac{\pi}{{\text{4}}}$
$\begin{align} \Rightarrow \dfrac{{{\text{4 - 2}}{{\text{x}}^{\text{2}}}}}{{\text{3}}}{\text{ = 1}} \hfill \\ \Rightarrow {\text{4 - 2}}{{\text{x}}^{\text{2}}}{\text{ = 3}} \hfill \\ \Rightarrow {\text{2}}{{\text{x}}^{\text{2}}}{\text{ = 4 - 3 = 1}} \hfill \\ \Rightarrow {{x = \pm }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }} \hfill \\ \end{align} $
16 से 18 में प्रत्येक व्यंजक का मान ज्ञात कीजिए
16: $\mathbf{{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin}}\dfrac{{{{2\pi }}}}{{\text{3}}}} \right)}$
उत्तर: ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin}}\dfrac{{{{2\pi }}}}{{\text{3}}}} \right)$
$\begin{align} \Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin x }}} \right){\text{ = x , x}} \in \left[ {\dfrac{{{{ - \pi }}}}{{\text{2}}},\dfrac{\pi}{{\text{2}}}} \right] \hfill \\ \Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin}}\dfrac{{{{2\pi }}}}{{\text{3}}}} \right){\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\left[ {\left( {{\text{sin}}\dfrac{{{{2\pi }}}}{{\text{3}}}} \right)} \right]{\text{ = }} \hfill \\ \Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin}}\left( {\dfrac{\pi}{{\text{3}}}} \right)} \right){\text{ , x}} \in \left[ {\dfrac{{{{ - \pi }}}}{{\text{2}}},\dfrac{\pi}{{\text{2}}}} \right] \hfill \\ \Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin}}\dfrac{{{{2\pi }}}}{{\text{3}}}} \right){\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{sin}}\left( {\dfrac{\pi}{{\text{3}}}} \right)} \right)\; = \;\dfrac{\pi}{{\text{3}}} \hfill \\ \end{align} $
17: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\dfrac{{{{3\pi }}}}{{\text{4}}}} \right)}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\dfrac{{{{3\pi }}}}{{\text{4}}}} \right)$
$\begin{align} \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\dfrac{{{{3\pi }}}}{{\text{4}}}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - tan}}\left( {{\text{ - }}\dfrac{{{{3\pi }}}}{{\text{4}}}} \right)} \right) \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - tan}}\left( {{{\pi - }}\dfrac{\pi}{{\text{4}}}} \right)} \right) \hfill \\ \end{align} $
$ \Rightarrow {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{ - tan}}\dfrac{\pi}{{\text{4}}}} \right]{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{tan}}\left( {{\text{ - }}\dfrac{\pi}{{\text{4}}}} \right)} \right]{\text{, x}} \in \left[ {{\text{ - }}\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]$
$ \Rightarrow \therefore {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\left( {\dfrac{{{{3\pi }}}}{{\text{4}}}} \right)} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left[ {{\text{tan}}\left( {{\text{ - }}\dfrac{\pi}{{\text{4}}}} \right)} \right]{\text{ = - }}\dfrac{\pi}{{\text{4}}}$
18: $\mathbf{{\text{tan}}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ + co}}{{\text{t}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{2}}}} \right)}$
उत्तर: $ \Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = x}} \Rightarrow {\text{sin x = }}\dfrac{{\text{3}}}{{\text{5}}}$
$\begin{align} \Rightarrow {\text{cos x = }}\sqrt {{\text{1 - si}}{{\text{n}}^{\text{2}}}{\text{x}}} {\text{ = }}\dfrac{{\text{4}}}{{\text{5}}}\;\; \Rightarrow {\text{sec x = }}\dfrac{{\text{5}}}{{\text{4}}} \hfill \\ \Rightarrow \therefore {\text{tan x = }}\sqrt {{\text{se}}{{\text{c}}^{\text{2}}}{\text{x - 1}}} {\text{ = }}\sqrt {\dfrac{{{\text{25}}}}{{{\text{16}}}}{\text{ - 1}}} {\text{ = }}\dfrac{{\text{3}}}{{\text{4}}} \hfill \\ \Rightarrow \therefore {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{4}}} \hfill \\ \Rightarrow \therefore {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{4}}}{\text{ }}............\left( {\text{1}} \right) \hfill \\ \Rightarrow {\text{co}}{{\text{t}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{2}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{2}}}{{\text{3}}}{\text{ }}...........\left( {\text{2}} \right) \hfill \\ \Rightarrow {\text{tan}}\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ + co}}{{\text{t}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{2}}}} \right) \hfill \\ \Rightarrow {\text{tan}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\left( {\dfrac{{\text{3}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{2}}}{{\text{3}}}} \right)}}{{{\text{1 - }}\dfrac{{\text{3}}}{{\text{4}}}{\text{ }}{\text{. }}\dfrac{{\text{2}}}{{\text{3}}}}}} \right)} \right) \hfill \\ \Rightarrow {\text{tan}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{9 + 8}}}}{{{\text{12 - 6}}}}} \right)} \right) \hfill \\ \Rightarrow {\text{tan}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{17}}}}{{\text{6}}}} \right)} \right){\text{ = }}\dfrac{{{\text{17}}}}{{\text{6}}} \hfill \\ \end{align} $
19: $\mathbf{{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right)}$ का मान
$\mathbf{\dfrac{{{{7\pi }}}}{{\text{6}}}}$
$\mathbf{\dfrac{{{{5\pi }}}}{{\text{6}}}}$
$\mathbf{\dfrac{\pi}{3}}$
$\mathbf{\dfrac{\pi}{{\text{6}}}}$
उत्तर: ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right)\;\;,\;\;\;x \in \left[ {0,\pi } \right]$
$\begin{align} {\text{}} \Rightarrow {\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right){\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{ - 7\pi }}}}{{\text{6}}}} \right){\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\left( {{{2\pi - }}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right)} \right) \hfill \\ {\text{}} \Rightarrow {\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{5 \pi }}}}{{\text{6}}}} \right)\;\;\;\;{\text{,}}\dfrac{{{{5 \pi }}}}{{\text{6}}} \in \left[ {{0, \pi }} \right] \hfill \\ {\text{}} \Rightarrow \therefore \;\;{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right){\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{5 \pi }}}}{{\text{6}}}} \right){\text{ = }}\dfrac{{{{5 \pi }}}}{{\text{6}}} \hfill \\ \end{align} $
(B) सही विकल्प है
20: $\mathbf{{\text{sin}}\left( {\dfrac{\pi}{{\text{3}}}{\text{ - si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)} \right)}$ का मान
$\mathbf{\dfrac{1}{2}}$
$\mathbf{\dfrac{1}{3}}$
$\mathbf{\dfrac{1}{4}}$
$\mathbf{1}$
उत्तर: ${\text{sin}}\left( {\dfrac{\pi}{{\text{3}}}{\text{ - si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)} \right)$
$\begin{align} \Rightarrow {\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = x}} \hfill \\ \Rightarrow {\text{sin x = - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ = - sin }}\dfrac{\pi}{{\text{6}}}{\text{ = sin }}\left( {{\text{ - }}\dfrac{\pi}{{\text{6}}}} \right) \hfill \\ \Rightarrow \therefore \,\;{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = - }}\dfrac{\pi}{{\text{6}}} \hfill \\ \Rightarrow \therefore \;\;{\text{sin}}\left( {\dfrac{\pi}{{\text{3}}}{\text{ - si}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}} \right)} \right){\text{ = sin}}\left( {\dfrac{\pi}{{\text{3}}}{\text{ + }}\dfrac{\pi}{{\text{6}}}} \right) \hfill \\ {\text{sin}}\left( {\dfrac{\pi}{{\text{2}}}} \right){\text{ = 1}} \hfill \\ \end{align} $
(D) सही विकल्प है
21: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\text{3}} {\text{ - co}}{{\text{t}}^{{\text{ - 1}}}}{\text{( - }}\sqrt {\text{3}} {\text{)}}}$ का मान
\[\mathbf{\pi}\]
\[\mathbf{{\text{ - }}\dfrac{\pi}{{\text{2}}}}\]
\[\mathbf{{\text{0}}}\]
\[\mathbf{{\text{2}}\sqrt 3} \]
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\text{3}} {\text{ - co}}{{\text{t}}^{{\text{ - 1}}}}{\text{( - }}\sqrt {\text{3}} {\text{)}}$
$\begin{align} {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{( tan}}\dfrac{\pi}{{\text{3}}}{\text{) - co}}{{\text{t}}^{{\text{ - 1}}}}{\text{( - cot }}\dfrac{\pi}{{\text{6}}}{\text{)}} \hfill \\ \dfrac{\pi}{{\text{3}}}{\text{ - co}}{{\text{t}}^{{\text{ - 1}}}}\left[ {{\text{cot }}\left( {{{\pi - }}\dfrac{\pi}{{\text{6}}}} \right)} \right] \hfill \\ \dfrac{\pi}{{\text{3}}}{\text{ - co}}{{\text{t}}^{{\text{ - 1}}}}\left[ {{\text{cot }}\left( {\dfrac{{{{5\pi }}}}{{\text{6}}}} \right)} \right] \hfill \\ \dfrac{\pi}{{\text{3}}}{\text{ - }}\dfrac{{{{5\pi }}}}{{\text{6}}}{\text{ = }}\dfrac{{{{2\pi - 5\pi }}}}{{\text{6}}}{\text{ = - }}\dfrac{{{{3\pi }}}}{{\text{6}}}{\text{ = - }}\dfrac{\pi}{{\text{2}}} \hfill \\ \end{align} $
(B) सही विकल्प है
प्रश्नावली A2
निम्नलिखित के मान ज्ञात कीजिए
1: $\mathbf{{\cos ^{{\text{ - 1}}}}\left( {{\text{cos }}\dfrac{{{{13\pi }}}}{{\text{6}}}} \right)}$
उत्तर: दिया गया है ${\cos ^{{\text{ - 1}}}}\left( {{\text{cos }}\dfrac{{{{13\pi }}}}{{\text{6}}}} \right)$
हमे ज्ञात है कि ${\text{x}} \in \left[ {{0, \pi }} \right]$ के लिए ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos x }}} \right){\text{ = x}}$
$\begin{align} {\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\dfrac{{{{13\pi }}}}{{\text{6}}}} \right){\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos}}\;\left( {{{2\pi + }}\dfrac{\pi}{{\text{6}}}} \right)} \right) \hfill \\ {\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\left( {{\text{cos }}\left( {\dfrac{\pi}{{\text{6}}}} \right)} \right){\text{ = }}\dfrac{\pi}{{\text{6}}} \hfill \\ \end{align} $
2: $\mathbf{{\tan ^{{\text{ - 1}}}}\left( {{\text{tan }}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right)}$
उत्तर: दिया गया है ${\tan ^{{\text{ - 1}}}}\left( {{\text{tan }}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right)$
हमे ज्ञात है कि ${\text{x}} \in \left[ {\dfrac{\pi}{{\text{2}}}{\text{, }}\dfrac{\pi}{{\text{2}}}} \right]$ के लिए ${\tan ^{{\text{ - 1}}}}\left( {\tan {\text{ x }}} \right){\text{ = x}}$
$\begin{align} {\tan ^{{\text{ - 1}}}}\left( {\tan {\text{ }}\dfrac{{{{7\pi }}}}{{\text{6}}}} \right){\text{ = }}{\tan ^{{\text{ - 1}}}}\left( {\tan {\text{ }}\left( {{{\pi + }}\dfrac{\pi}{{\text{6}}}} \right)} \right) \hfill \\ {\text{ = }}{\tan ^{{\text{ - 1}}}}\left( {\tan {\text{ }}\left( {\dfrac{\pi}{{\text{6}}}} \right)} \right){\text{ = }}\dfrac{\pi}{{\text{6}}} \hfill \\ \end{align} $
3: $\mathbf{{\text{2si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{24}}}}{{\text{7}}}}$
उत्तर: ${\text{2si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = 2ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\sqrt {{{\text{5}}^{\text{2}}}{\text{ - }}{{\text{3}}^{\text{2}}}} }}\;\;\;\;\;\;\;\;\;\;\quad \left[ {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{p}}}{{\text{h}}}{\text{ = }}} \right.\left. {\begin{array}{*{20}{c}} {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{p}}}{{\sqrt {{{\text{h}}^{\text{2}}}{\text{ - }}{{\text{p}}^{\text{2}}}} }}} \end{array}} \right]{\text{ }}$
${\text{ = 2ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{4}}}$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2 X }}\dfrac{{\text{3}}}{{\text{4}}}}}{{{\text{1 - }}{{\left( {\dfrac{{\text{3}}}{{\text{4}}}} \right)}^{\text{2}}}}}\quad \;\;\;\;\;\;\;\;\;\;\;\;\left[ {{\text{2ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2x}}}}{{{\text{1 - }}{{\text{x}}^{\text{2}}}}}} \right] \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}}}{{\dfrac{{\text{7}}}{{{\text{16}}}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{24}}}}{{\text{7}}} \hfill \\ \end{align} $
4: $\mathbf{{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{8}}}{{{\text{17}}}}{\text{ + si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{77}}}}{{{\text{36}}}}}$
उत्तर: ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{8}}}{{{\text{17}}}}{\text{ + si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{8}}}{{\sqrt {{\text{1}}{{\text{7}}^{\text{2}}}{\text{ - }}{{\text{8}}^{\text{2}}}} }}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\sqrt {{{\text{5}}^{\text{2}}}{\text{ - }}{{\text{3}}^{\text{2}}}} }}$
$\begin{align} \left[ {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{p}}}{{\text{h}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{p}}}{{\sqrt {{{\text{h}}^{\text{2}}}{\text{ - }}{{\text{p}}^{\text{2}}}} }}} \right] \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{8}}}{{{\text{15}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{4}}} \hfill \\ \end{align} $
${\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{8}}}{{{\text{15}}}}{\text{ + }}\dfrac{{\text{3}}}{{\text{4}}}}}{{{\text{1 - }}\dfrac{{\text{8}}}{{{\text{15}}}}{\text{ X }}\dfrac{{\text{3}}}{{\text{4}}}}}} \right)$
$\begin{align} \left[ {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x + ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{x + y}}}}{{{\text{1 - x X y}}}}} \right)} \right] \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{77}}}}{{{\text{36}}}} \hfill \\ \end{align} $
5: $\mathbf{{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{\text{4}}}{{\text{5}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{12}}}}{{{\text{13}}}}{\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{33}}}}{{{\text{65}}}}}$
उत्तर: ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{\text{4}}}{{\text{5}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{12}}}}{{{\text{13}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{{\text{5}}^{\text{2}}}{\text{ - }}{{\text{4}}^{\text{2}}}} }}{{\text{4}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{\text{1}}{{\text{3}}^{\text{2}}}{\text{ - 1}}{{\text{2}}^{\text{2}}}} }}{{{\text{12}}}}$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{4}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{5}}}{{{\text{12}}}} \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ + }}\dfrac{{\text{3}}}{{\text{4}}}}}{{{\text{1 - }}\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ X }}\dfrac{{\text{3}}}{{\text{4}}}}}} \right) \hfill \\ \left[ {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x + ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{y = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{x + y}}}}{{{\text{1 - x X y}}}}} \right)} \right] \hfill \\ \end{align} $
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{56}}}}{{{\text{ 33 }}}} \hfill \\ {\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{33}}}}{{\sqrt {{\text{5}}{{\text{6}}^{\text{2}}}{\text{ + 3}}{{\text{3}}^{\text{2}}}} }} \hfill \\ {\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{33}}}}{{{\text{65}}}} \hfill \\ \end{align} $
6: $\mathbf{{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{12}}}}{{{\text{13}}}}{\text{ + si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{56}}}}{{{\text{65}}}}}$
उत्तर: ${\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{12}}}}{{{\text{13}}}}{\text{ + si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{\text{1}}{{\text{3}}^{\text{2}}}{\text{ - 1}}{{\text{2}}^{\text{2}}}} }}{{{\text{12}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\sqrt {{{\text{5}}^{\text{2}}}{\text{ - }}{{\text{3}}^{\text{2}}}} }}$
$\begin{align} {\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{56}}}}{{\sqrt {{\text{5}}{{\text{6}}^{\text{2}}}{\text{ + 3}}{{\text{3}}^{\text{2}}}} }} \hfill \\ {\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{56}}}}{{{\text{65}}}} \hfill \\ \end{align} $
${\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{4}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{5}}}{{{\text{12}}}}$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ + }}\dfrac{{\text{3}}}{{\text{4}}}}}{{{\text{1 - }}\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ X }}\dfrac{{\text{3}}}{{\text{4}}}}}} \right) \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{56}}}}{{{\text{33}}}}} \right) \hfill \\ \end{align} $
7: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{63}}}}{{{\text{16}}}}{\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{5}}}{{{\text{13}}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}}$
उत्तर: ${\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{5}}}{{{\text{13}}}}{\text{ + co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{\text{3}}}{{\text{5}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{5}}}{{\sqrt {{\text{1}}{{\text{3}}^{\text{2}}}{\text{ - }}{{\text{5}}^{\text{2}}}} }}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{{\text{5}}^{\text{2}}}{\text{ - }}{{\text{3}}^{\text{2}}}} }}{{\text{3}}}{\text{ }}$
${\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{4}}}{{\text{3}}}$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ + }}\dfrac{{\text{3}}}{{\text{4}}}}}{{{\text{1 - }}\dfrac{{\text{5}}}{{{\text{12}}}}{\text{ X }}\dfrac{{\text{3}}}{{\text{4}}}}}} \right) \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{63}}}}{{16}}} \right) \hfill \\ \end{align} $
8:$\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{7}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{3}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{8}}}{\text{ = }}\dfrac{\pi}{{\text{4}}}}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{5}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{7}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{3}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{8}}}$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{1}}}{{\text{5}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{7}}}}}{{{\text{1 - }}\dfrac{{\text{1}}}{{\text{5}}}{\text{ X }}\dfrac{{\text{1}}}{{\text{7}}}}}} \right){\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{1}}}{{\text{8}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{3}}}}}{{{\text{1 - }}\dfrac{{\text{1}}}{{\text{8}}}{\text{ X }}\dfrac{{\text{1}}}{{\text{3}}}}}} \right) \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{12}}}}{{{\text{34}}}}{\text{ + ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{11}}}}{{{\text{23}}}} \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{{\text{12}}}}{{{\text{34}}}}{\text{ + }}\dfrac{{{\text{11}}}}{{{\text{23}}}}}}{{{\text{1 - }}\dfrac{{{\text{12}}}}{{{\text{34}}}}{\text{ X }}\dfrac{{{\text{11}}}}{{{\text{23}}}}}}} \right) \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{650}}}}{{{\text{650}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(1)}} \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\dfrac{\pi}{{\text{4}}}} \right){\text{ = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \end{align} $
सिद्ध कीजिए
9: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\text{x}} {\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{1 - x}}}}{{{\text{1 + x}}}}} \right){\text{, x}} \in {\text{[0, 1]}}}$
उत्तर: ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\text{x}} {\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ X 2ta}}{{\text{n}}^{{\text{ - 1}}}}\sqrt {\text{x}} $
$\begin{align} {\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{1 + (}}\sqrt {\text{x}} {{\text{)}}^{\text{2}}}}}{{{\text{1 - (}}\sqrt {\text{x}} {{\text{)}}^{\text{2}}}}}\;\;\;\;\;\;\;\;\;\quad \left[ {{\text{2ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{ = co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{{\text{1 + }}{{\text{x}}^{\text{2}}}}}{{{\text{1 - }}{{\text{x}}^{\text{2}}}}}} \right] \hfill \\ {\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{1 - x}}}}{{{\text{1 + x}}}}} \right) \hfill \\ \end{align} $
10: $\mathbf{{\text{co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{1 + sin x}}} {\text{ + }}\sqrt {{\text{1 - sin x}}} }}{{\sqrt {{\text{1 + sinx }}} {\text{ - }}\sqrt {{\text{1 - sinx}}} }}} \right){\text{ = }}\dfrac{{\text{x}}}{{\text{2}}}{\text{, x}} \in \left( {{\text{0,}}\dfrac{\pi}{{\text{4}}}} \right)}$
उत्तर: ${\text{co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{1 + sin x}}} {\text{ + }}\sqrt {{\text{1 - sin x}}} }}{{\sqrt {{\text{1 + sin x}}} {\text{ - }}\sqrt {{\text{1 - sin x}}} }}} \right)$
$\begin{align} {\text{ = co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + 2cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{sin}}\dfrac{{\text{x}}}{{\text{2}}}} {\text{ + }}\sqrt {{\text{co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ - 2 cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{sin}}\dfrac{{\text{x}}}{{\text{2}}}} }}{{\sqrt {{\text{co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + 2cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{sin}}\dfrac{{\text{x}}}{{\text{2}}}} {\text{ - }}\sqrt {{\text{co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ - 2 cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{sin}}\dfrac{{\text{x}}}{{\text{2}}}} }}} \right) \hfill \\ {\text{ = co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\dfrac{{\left( {{\text{cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + sin}}\dfrac{{\text{x}}}{{\text{2}}}} \right){\text{ + }}\left( {{\text{cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ - sin}}\dfrac{{\text{x}}}{{\text{2}}}} \right)}}{{\left( {{\text{cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ + sin}}\dfrac{{\text{x}}}{{\text{2}}}} \right){\text{ - }}\left( {{\text{cos}}\dfrac{{\text{x}}}{{\text{2}}}{\text{ - sin}}\dfrac{{\text{x}}}{{\text{2}}}} \right)}}} \right) \hfill \\ {\text{ = co}}{{\text{t}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{2cos}}\dfrac{{\text{x}}}{{\text{2}}}}}{{{\text{2sin}}\dfrac{{\text{x}}}{{\text{2}}}}}} \right){\text{ = co}}{{\text{t}}^{{\text{ - 1}}}}\left( {{\text{cot}}\dfrac{{\text{x}}}{{\text{2}}}} \right){\text{ = }}\dfrac{{\text{x}}}{{\text{2}}} \hfill \\ \end{align} $
11: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{1 + x}}} {\text{ - }}\sqrt {{\text{1 - x}}} }}{{\sqrt {{\text{1 + x}}} {\text{ + }}\sqrt {{\text{1 - x}}} }}} \right){\text{ = }}\dfrac{\pi}{{\text{4}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x , - }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }} \leqslant {\text{x}} \leqslant {\text{1 }}}$
उत्तर: दिया गया है ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{1 + x}}} {\text{ - }}\sqrt {{\text{1 - x}}} }}{{\sqrt {{\text{1 + x}}} {\text{ + }}\sqrt {{\text{1 - x}}} }}} \right)$
मान लेते है कि ${{x = cos t }}\; \Rightarrow {\text{t = co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}}$
${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{1 + x}}} {\text{ - }}\sqrt {{\text{1 - x}}} }}{{\sqrt {{\text{1 + x}}} {\text{ + }}\sqrt {{\text{1 - x}}} }}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{1 + cos t}}} {\text{ - }}\sqrt {{\text{1 - cos t}}} }}{{\sqrt {{\text{1 + cos t}}} {\text{ + }}\sqrt {{\text{1 - cos t}}} }}} \right)$
${\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\sqrt {{\text{2 co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{t}}}{{\text{2}}}} {\text{ - }}\sqrt {{\text{2 si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{t}}}{{\text{2}}}} }}{{\sqrt {{\text{2co}}{{\text{s}}^{\text{2}}}\dfrac{{\text{t}}}{{\text{2}}}} {\text{ + }}\sqrt {{\text{2si}}{{\text{n}}^{\text{2}}}\dfrac{{\text{t}}}{{\text{2}}}} }}} \right){\text{ }}$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{cos}}\dfrac{{\text{t}}}{{\text{2}}}{\text{ - sin}}\dfrac{{\text{t}}}{{\text{2}}}}}{{\left. {{\text{cos}}\dfrac{{\text{t}}}{{\text{2}}}{\text{ + sin}}\dfrac{{\text{t}}}{{\text{2}}}} \right)}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{1 - tan}}\dfrac{{\text{t}}}{{\text{2}}}}}{{{\text{1 + tan}}\dfrac{{\text{t}}}{{\text{2}}}}}} \right)} \right. \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{tan}}\dfrac{\pi}{{\text{4}}}{\text{ - tan}}\dfrac{{\text{t}}}{{\text{2}}}}}{{{\text{1 + tan}}\dfrac{\pi}{{\text{4}}}{\text{tan}}\dfrac{{\text{t}}}{{\text{2}}}}}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {{\text{tan}}\left( {\dfrac{\pi}{{\text{4}}}{\text{ - }}\dfrac{{\text{t}}}{{\text{2}}}} \right)} \right){\text{ = }}\dfrac{\pi}{{\text{4}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{2}}}{\text{co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x}} \hfill \\ \end{align} $
12: $\mathbf{\dfrac{{{{9\pi }}}}{{\text{8}}}{\text{ - }}\dfrac{{\text{9}}}{{\text{4}}}{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{3}}}{\text{ = }}\dfrac{{\text{9}}}{{\text{4}}}{\text{ si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2}}\sqrt {\text{2}} }}{{\text{3}}}}$
उत्तर: $\dfrac{{{{9\pi }}}}{{\text{8}}}{\text{ - }}\dfrac{{\text{9}}}{{\text{4}}}{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{3}}}{\text{ = }}\dfrac{{\text{9}}}{{\text{4}}}\left( {\dfrac{\pi}{{\text{2}}}{\text{ - si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{3}}}} \right)$
$\begin{align} {\text{ = }}\dfrac{{\text{9}}}{{\text{4}}}{\text{co}}{{\text{s}}^{{\text{ - 1}}}}\dfrac{{\text{1}}}{{\text{3}}}\;\;\;\;\;\;\;\quad \left[ {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x + co}}{{\text{s}}^{{\text{ - 1}}}}{\text{x = }}\dfrac{\pi}{{\text{2}}}} \right] \hfill \\ {\text{ = }}\dfrac{{\text{9}}}{{\text{4}}}{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {{{\text{3}}^{\text{2}}}{\text{ - }}{{\text{1}}^{\text{2}}}} }}{{\text{3}}} \hfill \\ {\text{ = }}\dfrac{{\text{9}}}{{\text{4}}}{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\sqrt {\text{8}} }}{{\text{3}}}{\text{ = }}\dfrac{{\text{9}}}{{\text{4}}}{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2}}\sqrt {\text{2}} }}{{\text{3}}} \hfill \\ \end{align} $
निम्नलिखित को सरल कीजिए
13: $\mathbf{{\text{2ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(cos x) = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(2cosec x)}}}$
उत्तर: दिया गया है ${\text{2ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(cos x) = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(2cosec x)}}$
$\begin{align} {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2cos x}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{x}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(2cosec x)}} \hfill \\ \left[ {{\text{2 ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{2x}}}}{{{\text{1 - }}{{\text{x}}^{\text{2}}}}}} \right] \hfill \\ \end{align} $
$\dfrac{{{\text{2cos x}}}}{{{\text{1 - co}}{{\text{s}}^{\text{2}}}{\text{x}}}}{\text{ = 2 cosec x}} \Rightarrow \dfrac{{{\text{2 cos x}}}}{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{x}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{sin x}}}}$
$\begin{align} \Rightarrow \dfrac{{{\text{cos x}}}}{{{\text{sin x}}}}{\text{ = 1}} \Rightarrow {\text{cot x = cot}}\dfrac{\pi}{{\text{4}}} \hfill \\ \Rightarrow {\text{x = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \end{align} $
14: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - x}}}}{{{\text{1 + x}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x ,(x > 0)}}}$
उत्तर: दिया गया है ${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - x}}}}{{{\text{1 + x}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
$\begin{align} {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{1 - x}}}}{{{\text{1 + x}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}} \hfill \\ {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{1 - ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}} \hfill \\ \Rightarrow \dfrac{\pi}{{\text{4}}}{\text{ = }}\dfrac{{\text{3}}}{{\text{2}}}{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}} \Rightarrow \dfrac{\pi}{{\text{6}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}} \hfill \\ {\text{x = }}\dfrac{{\text{1}}}{{\sqrt {\text{3}} }} \hfill \\ \end{align} $
15: $\mathbf{{\text{sin }}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ ,| x | < 1}}}$ बराबर होता है
$\mathbf{\dfrac{{\text{x}}}{{\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} }}}$
$\mathbf{\dfrac{{\text{1}}}{{\sqrt {{\text{1 - }}{{\text{x}}^{\text{2}}}} }}}$
$\mathbf{\dfrac{{\text{1}}}{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} }}}$
$\mathbf{\dfrac{{\text{x}}}{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} }}}$
उत्तर: ${\text{sin}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ = }}$
$\begin{align} {\text{sin}}{\left( {{\text{si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{x}}}{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} }}} \right)^{{\text{ - 1}}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\quad \left[ {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{p}}}{{\text{b}}}{\text{ = si}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{p}}}{{\sqrt {{{\text{h}}^{\text{2}}}{\text{ + b}}} }}} \right] \hfill \\ {\text{sin}}\left( {{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}} \right){\text{ = }}\dfrac{{\text{x}}}{{\sqrt {{\text{1 + }}{{\text{x}}^{\text{2}}}} }} \hfill \\ \end{align} $
(D) सही उत्तर है
16: $\mathbf{{\text{si}}{{\text{n}}^{{\text{ - 1}}}}{\text{(1 - x) - 2 si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x = }}\dfrac{\pi}{{\text{2}}}}$ का मान बराबर है
$\mathbf{{\text{0,}}\dfrac{{\text{1}}}{{\text{2}}}}$
$\mathbf{{\text{1,}}\dfrac{{\text{1}}}{{\text{2}}}}$
$\mathbf{{\text{0}}}$
$\mathbf{\dfrac{{\text{1}}}{{\text{2}}}}$
उत्तर: मान लेते है कि ${{x = sin t }} \Rightarrow {\text{ t = si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}$
${\text{(1 - sin t) = sin}}\left( {\dfrac{\pi}{{\text{2}}}{\text{ + 2t}}} \right) \Rightarrow {\text{1 - sin t = cos 2t}}$
${\text{1 - sin t = 1 - 2si}}{{\text{n}}^{\text{2}}}{\text{t}} \Rightarrow {\text{2}}{{\text{x}}^{\text{2}}}{\text{ - x = 0}} \Rightarrow {\text{x (2x - 1) = 0}}$
${{x = 0, }}\dfrac{{\text{1}}}{{\text{2}}}$
(A) सही उत्तर है
17: $\mathbf{{\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{x}}}{{\text{y}}}} \right){\text{ - ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{x - y}}}}{{{\text{x + y}}}}}$ का मान
$\mathbf{\dfrac{\pi}{{\text{2}}}}$
$\mathbf{\dfrac{\pi}{{\text{3}}}}$
$\mathbf{\dfrac{\pi}{{\text{4}}}}$
$\mathbf{\dfrac{{{{3\pi }}}}{{\text{4}}}}$
उत्तर: (C) सही उत्तर है
${\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{x}}}{{\text{y}}}} \right){\text{ - ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{{\text{x - y}}}}{{{\text{x + y}}}}{\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\dfrac{{\text{x}}}{{\text{y}}}{\text{ - }}\dfrac{{{\text{x - y}}}}{{{\text{x + y}}}}}}{{{\text{1 + }}\dfrac{{\text{x}}}{{\text{y}}}{\text{ X }}\dfrac{{{\text{x - y}}}}{{{\text{x + y}}}}}}} \right)$
$\begin{align} {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{{\text{x(x + y) - y(x - y)}}}}{{{\text{y(x + y) + x(x - y)}}}}} \right) \hfill \\ {\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\left. {{{\text{x}}^{\text{2}}}{\text{ + xy - xy + }}{{\text{y}}^{\text{2}}}} \right)}}{{{{\text{x}}^{\text{2}}}{\text{ + xy - xy + }}{{\text{y}}^{\text{2}}}}}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\left. {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)}}{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}}}} \right){\text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}{\text{(1) = }}\dfrac{\pi}{{\text{4}}} \hfill \\ \end{align} $
(C) सही उत्तर है
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions In Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 12 Maths Chapter 2 solution Hindi medium is created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 12 Maths Chapter 2 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 12 Maths Chapter 2 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 12 Maths Inverse Trigonometric Functions solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 12 Maths Inverse Trigonometric Functions in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 12 can download these solutions at any time as per their convenience for self-study purpose.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 12 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.
FAQs on NCERT Solutions for Class 12 Maths In Hindi Chapter 2 Inverse Trigonometric Functions In Hindi
1. What are NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions and why are they important for CBSE Board exams?
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions are step-by-step explanations of NCERT textbook problems, following the latest CBSE 2025-26 syllabus. They help students understand concepts like the principal value branch, properties of inverse trigonometric functions, and application in identities, ensuring strong conceptual clarity and improved accuracy in board exams.
2. How should students approach solving Class 12 Maths Chapter 2 using official NCERT Solutions?
Students should:
- Read the theory for each concept about inverse trigonometric functions thoroughly
- Attempt each exercise question step by step using official methods from NCERT Solutions
- Pay attention to domain and principal value branch restrictions in each problem
- Check each answer using the provided reasoning, not just the final value
3. Which topics in Class 12 Maths Chapter 2 are commonly considered challenging, and how do NCERT Solutions address these difficulties?
Topics like finding the principal value of inverse trigonometric expressions, proving identities, and solving composition of functions (e.g., sin-1(sin x)) are often challenging. NCERT Solutions provide step-wise breakdowns, clarify domain and range issues, and guide through standard algebraic manipulations, helping students overcome common errors.
4. Why is the concept of the principal value branch critical in inverse trigonometric functions, and how is it emphasized in NCERT Solutions?
The principal value branch ensures each inverse trigonometric value is unique and falls within a defined interval, avoiding ambiguity. NCERT Solutions always specify the principal branch (e.g., sin-1x ∈ [–π/2, π/2]) within solutions, reflecting the CBSE requirement for clear, justified answers.
5. How do NCERT Solutions help in solving problems involving conversion between trigonometric and inverse trigonometric expressions?
NCERT Solutions show detailed steps to simplify expressions where trigonometric and inverse trigonometric functions are combined, including using identities and algebraic substitutions. This approach helps students see how to manipulate such expressions correctly for CBSE-style questions.
6. What is the recommended strategy for checking understanding after completing each exercise in this chapter using NCERT Solutions?
After finishing each exercise, students should:
- Revisit questions they found difficult and review solution steps
- Try to solve similar problems independently
- Summarize key formulae and properties from that section
- Cross-verify obtained answers with those in the NCERT Solutions for accuracy
7. How do NCERT Solutions for Chapter 2 prepare students for competitive exams apart from the CBSE board?
The solutions not only follow CBSE methodology but also focus on analytical thinking and detailed derivations, which are beneficial for exams like JEE Main and other entrance tests where understanding the logic behind each step is crucial.
8. Can you explain with an example how to determine the value of composite inverse trigonometric functions using NCERT Solutions?
For example, to find sin-1(sin 2π/3), NCERT Solutions would:
- Note that sin 2π/3 = sin (π – π/3) = sin π/3
- Check if 2π/3 lies in the principal value range (–π/2, π/2); since it does not, use properties to express as an equivalent angle within the range
- Therefore, sin-1(sin 2π/3) = π – 2π/3 = π/3
9. What are some common errors students should avoid when solving inverse trigonometric problems using NCERT Solutions?
Common errors include:
- Ignoring the principal value interval for each inverse function
- Incorrectly applying algebraic identities without considering domains
- Overlooking sign conventions and the unique value rule
- Skipping step-wise justifications required by CBSE
10. How do NCERT Solutions ensure that answers are aligned with the CBSE marking scheme for Class 12 Maths?
Each solution is provided in a step-wise format, explicitly showing the working, use of definitions, substitutions, and final answer—all in accordance with the marking scheme that rewards logical progression and clear, justified responses.
11. Why should students use the NCERT Solutions as their primary reference for this chapter, rather than relying mainly on reference books?
NCERT Solutions are prepared strictly as per the latest CBSE syllabus and exam pattern for 2025-26. They focus on conceptual clarity over shortcuts, cover all textbook exercises exhaustively, and ensure students master the methods that will actually be assessed in board examinations.
12. What is the significance of domains and ranges when working with inverse trigonometric functions in the NCERT Solutions?
Domains and ranges are critical because inverse trigonometric functions are defined only for certain input values and yield outputs in particular intervals. NCERT Solutions consistently highlight valid input values and guide students to answers that respect these restrictions, reducing the risk of writing undefined or extraneous values.




















