![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Two radiations of photons energies 1eV and \[2.5eV\] successively illuminate a photosensitive metallic surface of work function \[0.5eV\]. The ratio of the maximum speeds of the emitted electrons is:
(A) 1:2
(B) 1:1
(C) 1:5
(D) 1:4
Answer
124.8k+ views
Hint: The maximum kinetic energy of the electrons is equal to the energy of the radiations reduced by the work function (i.e. energy of photon minus work function of metal). Kinetic energy is proportional to the square of the speeds,
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)