
In which of the following forms the energy is stored in the capacitor?
A) Charge
B) Potential
C) Capacitance
D) Electric field
Answer
174k+ views
Hint:
Capacitor: It is two terminal devices used to store electrical energy in an electric field. The area of the capacitor plates increases then the capacitance of the capacitor also increases and vice-versa.
The net charge on the capacitor as a whole is calculated as zero.
When a capacitor has a charge \[q\], this means that the positively charged conductor has a charge \[ + q\] and a negatively charged conductor has a charge \[ - q\].
The positively charged conductor has a higher potential than the negatively charged conductor.
Complete step by step solution:
The energy in the capacitor is stored in the form of an electrostatic field in the dielectric medium, when discharging a capacitor, the electrostatic field in the dielectric medium collapses and the energy stored in the capacitor gets released.
When a capacitor is being charged, some energy is lost by the source to move the charge from one plate to another plate.
The force required to move the charges from one plate to another gradually increases as the capacitor gets charged over time, to overcome by the energy lost by the source, after a certain point the source can no longer stand the force opposing the flow of charge through the plates and the capacitor is said to be fully charged or saturated.
Energy stored in a capacitor is in the form of electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.
Hence the correct option is \[\left( {\text{B}} \right)\].
Note:A Capacitor resists the sudden change in voltage
A non-conducting region is present between these two plates of the capacitor which is called a dielectric.
This dielectric can be a vacuum, air, mica, paper, ceramic, aluminum, or any material. The name of the capacitor is given by the dielectric used between the plates.
Capacitor: It is two terminal devices used to store electrical energy in an electric field. The area of the capacitor plates increases then the capacitance of the capacitor also increases and vice-versa.
The net charge on the capacitor as a whole is calculated as zero.
When a capacitor has a charge \[q\], this means that the positively charged conductor has a charge \[ + q\] and a negatively charged conductor has a charge \[ - q\].
The positively charged conductor has a higher potential than the negatively charged conductor.
Complete step by step solution:
The energy in the capacitor is stored in the form of an electrostatic field in the dielectric medium, when discharging a capacitor, the electrostatic field in the dielectric medium collapses and the energy stored in the capacitor gets released.
When a capacitor is being charged, some energy is lost by the source to move the charge from one plate to another plate.
The force required to move the charges from one plate to another gradually increases as the capacitor gets charged over time, to overcome by the energy lost by the source, after a certain point the source can no longer stand the force opposing the flow of charge through the plates and the capacitor is said to be fully charged or saturated.
Energy stored in a capacitor is in the form of electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.
Hence the correct option is \[\left( {\text{B}} \right)\].
Note:A Capacitor resists the sudden change in voltage
A non-conducting region is present between these two plates of the capacitor which is called a dielectric.
This dielectric can be a vacuum, air, mica, paper, ceramic, aluminum, or any material. The name of the capacitor is given by the dielectric used between the plates.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

Wheatstone Bridge for JEE Main Physics 2025
