
The relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\] is correctly shown as:
This question has multiple correct options
(A) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(B) \[{{K}_{p}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
(C) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(D) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Answer
151.8k+ views
Hint: Here we know that \[{{K}_{c}}\] and \[{{K}_{p}}\] are equilibrium constants of gaseous mixture. Here \[{{K}_{c}}\] is for molar concentration and \[{{K}_{p}}\] is for partial pressure of the gases inside a closed system.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Collision - Important Concepts and Tips for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Thermodynamics Class 11 Notes: CBSE Chapter 5

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

The reaction of P4 with X leads selectively to P4O6 class 11 chemistry JEE_Main

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
