
For pure water:
(A) pH increases while pOH decreases with rise in temperature
(B) pH decreases while pOH increases with rise in temperature
(C) Both pH and pOH decreases with rise in temperature
(D) Both pH and pOH increases with rise in temperature
Answer
232.8k+ views
Hint: pH and pOH are temperature dependent. When the temperature rises, the rate of ionization also changes accordingly. Similarly when the temperature will fall, there will be a change in both the pH and pOH values for pure water.
For pure water, at \[25^\circ \]c,\[\left[ {{H^ + }} \right] = {10^{ - 7}}\] and \[\left[ {O{H^ - }} \right] = {10^{ - 7}}\]
Complete Step By Step Answer:
At a temperature of \[100^\circ \]c, ${k_w}$ (that is ionic product of water) of Boiling Water is ${10^{ - 12}}$, then we know that
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {k_w}\]
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {10^{ - 12}}\]
We clearly know that \[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow \]\[{\left[ {{H^ + }} \right]^2} = {10^{ - 12}}\]
\[ \Rightarrow \]\[\left[ {{H^ + }} \right] = {10^{ - 6.36}}\]
\[ \Rightarrow \]$pH = - log\left[ {{H^ + }} \right] = - \log \left( {{{10}^{ - 6}}} \right)$
\[ \Rightarrow \]$pH = 6$
At a temperature of \[50^\circ \]c, $p{K_w} = 13\cdot36$, (where $p{K_w}$ is the negative log of ${k_w}$) then we also know that
$pH + pOH = p{K_w}$
We are aware of the fact that $pH = pOH$
\[ \Rightarrow \]\[pH = \dfrac{{13.36}}{2} = 6\cdot68\]
So from the above whole discussion, we can conclude that when the temperature of pure water decreases, pH and pOH values of both will increase.
Or we can also say that pH and pOH values will decrease when the temperature of the pure water will increase.
The Correct Answer of the above question is option C. both pH and pOH decreases with rise in temperature.
Note: pH and pOH values are always the same for pure water. And both are temperature dependent. When the temperature rises, both values of pH and pOH decrease, while these values increase when the temperature of pure water falls down.
For pure water, at \[25^\circ \]c,\[\left[ {{H^ + }} \right] = {10^{ - 7}}\] and \[\left[ {O{H^ - }} \right] = {10^{ - 7}}\]
Complete Step By Step Answer:
At a temperature of \[100^\circ \]c, ${k_w}$ (that is ionic product of water) of Boiling Water is ${10^{ - 12}}$, then we know that
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {k_w}\]
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {10^{ - 12}}\]
We clearly know that \[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow \]\[{\left[ {{H^ + }} \right]^2} = {10^{ - 12}}\]
\[ \Rightarrow \]\[\left[ {{H^ + }} \right] = {10^{ - 6.36}}\]
\[ \Rightarrow \]$pH = - log\left[ {{H^ + }} \right] = - \log \left( {{{10}^{ - 6}}} \right)$
\[ \Rightarrow \]$pH = 6$
At a temperature of \[50^\circ \]c, $p{K_w} = 13\cdot36$, (where $p{K_w}$ is the negative log of ${k_w}$) then we also know that
$pH + pOH = p{K_w}$
We are aware of the fact that $pH = pOH$
\[ \Rightarrow \]\[pH = \dfrac{{13.36}}{2} = 6\cdot68\]
So from the above whole discussion, we can conclude that when the temperature of pure water decreases, pH and pOH values of both will increase.
Or we can also say that pH and pOH values will decrease when the temperature of the pure water will increase.
The Correct Answer of the above question is option C. both pH and pOH decreases with rise in temperature.
Note: pH and pOH values are always the same for pure water. And both are temperature dependent. When the temperature rises, both values of pH and pOH decrease, while these values increase when the temperature of pure water falls down.
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

