
If $y = {x^{{x^{x \cdots \infty }}}}$, then find $\dfrac{{dy}}{{dx}}$.
A. $y{x^{y - 1}}$
B. $\dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
C. $\dfrac{{{y^2}}}{{x\left( {1 + y\log x} \right)}}$
D. None of these
Answer
192.6k+ views
Hint: We will replace the power of $x$ by $y$. Then take the logarithm function on both sides of the equation. Then differentiate the equation with respect to $x$, to calculate $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Recently Updated Pages
JEE Main 2026 Exam Pattern: Marking Scheme, Syllabus

Electric Field of Charged Spherical Shell: Derivation, Formula & Applications

Inductive Effect and Acidic Strength Explained for JEE & NEET

Balancing by Oxidation Number Method Important Concepts and Tips for JEE

Free Radical Substitution Mechanism: Steps & Examples for JEE/NEET

Geostationary vs Geosynchronous Satellites: Definitions, Differences, Uses

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Elastic Collisions in One Dimension: Concepts, Derivation, and Examples

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Average and RMS Value in Physics: Formula, Comparison & Application
