
The number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together is given by
A. \[6! \times 5!\]
B. \[30\]
C. \[5! \times 4!\]
D. \[7! \times 5!\]
Answer
221.7k+ views
Hint: In this question, we need to find the total number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together. For this, we need to use the concept of factorial and mathematical identities for the factorial of a number and the permutation.
Formula used: We will use the following mathematical rule for the factorial of a number.
\[n! = n \times \left( {n - 1} \right) \times .... \times 1\]
Here, \[n\] is a positive integer.
Also, the permutation rule is given by
\[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Here, \[n\] and \[r\] are positive integers.
Complete step-by-step solution:
We know that there are 6 men and 5 women.
Here, we can place 5 women in 6 empty places between them so that no two women will be together.
So, this can be done in the following way.
Thus, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( {6 - 5} \right)!}}\]
By simplifying, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( 1 \right)!}}\]
\[{}^6{P_5} = 6!\]
\[{}^6{P_5} = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[{}^6{P_5} = 720\]
Since the activities are interdependent, the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together is limited.
Thus, we get
\[6! \times 5! = 720 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[6! \times 5! = 720 \times 120\]
By simplifying, we get
\[6! \times 5! = 86400\]
Hence, there are 86400 ways in which 6 men and 5 women can dine at a round table if no two women are to sit together.
That is \[6! \times 5!\] ways.
Therefore, the correct option is (A).
Note: Many students make mistakes in the permutation formula. They may confuse about the combination and permutation formulae. Due to the very small difference between the two formulae, we get a big difference in the desired result.
Formula used: We will use the following mathematical rule for the factorial of a number.
\[n! = n \times \left( {n - 1} \right) \times .... \times 1\]
Here, \[n\] is a positive integer.
Also, the permutation rule is given by
\[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Here, \[n\] and \[r\] are positive integers.
Complete step-by-step solution:
We know that there are 6 men and 5 women.
Here, we can place 5 women in 6 empty places between them so that no two women will be together.
So, this can be done in the following way.
Thus, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( {6 - 5} \right)!}}\]
By simplifying, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( 1 \right)!}}\]
\[{}^6{P_5} = 6!\]
\[{}^6{P_5} = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[{}^6{P_5} = 720\]
Since the activities are interdependent, the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together is limited.
Thus, we get
\[6! \times 5! = 720 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[6! \times 5! = 720 \times 120\]
By simplifying, we get
\[6! \times 5! = 86400\]
Hence, there are 86400 ways in which 6 men and 5 women can dine at a round table if no two women are to sit together.
That is \[6! \times 5!\] ways.
Therefore, the correct option is (A).
Note: Many students make mistakes in the permutation formula. They may confuse about the combination and permutation formulae. Due to the very small difference between the two formulae, we get a big difference in the desired result.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

