![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Find static and dynamic resistances of a PN junction germanium diode for an applied forward bias of $0.2volts$, if the temperature is ${300^o}K$ and reverse saturation current of $1A$:
(A) $2.85\Omega, 22.5\Omega $
(B) $22.85\Omega, 2.5\Omega $
(C) $5.85\Omega, 26.5\Omega $
(D) $5.63\Omega, 55\Omega $
Answer
125.1k+ views
HintIn these kinds of situations the first thing important is to notice the given problem statement. Specially this is a question regarding little manipulation. First we just have to sort what we got and then we just have to interpret the missing quantities for the equation. In this question we will get the answer simply by putting the values in the equation for current and then resistances.
Complete step by step answer:
Here, first we have to find sort out the given quantities:
$
T = 300K \\
V = 0.2volts \\
k = 1.38 \times {10^{ - 23}} \\
$
And the ${I_s}$ for the Germanium diode is ${10^{ - 6}}A$ where the ${I_s}$ is the saturation current.
Now we have to define the formula for the forward current through the diode, which is:
$I = {I_s}[\exp (\dfrac{{eV}}{{kT}}) - 1]$
Now the final step is just to put up the formula and obtain the value:
$
I = {I_s}[\exp (\dfrac{{eV}}{{kT}}) - 1] \\
\Rightarrow I = {10^{ - 6}}[\exp (\dfrac{{1.6*{{10}^{ - 19}}*0.2}}{{1.38*{{10}^{ - 23}}*300}}) - 1] \\
\Rightarrow I = 2.27mA \\
$
Therefore the static resistance would be
$
{r_s} = \dfrac{V}{I} \\
\Rightarrow {r_s} = \dfrac{{0.2}}{{2.27\times{{10}^{ - 3}}}} \\
\Rightarrow {r_s} = 88\Omega \\
$
And, the dynamic resistance would be:
\[
{r_d} = \dfrac{{VT}}{I} = \dfrac{{kT}}{{eI}} \\
\Rightarrow {r_d} = \dfrac{{26\times{{10}^{ - 3}}}}{{2.27\times{{10}^{ - 3}}}} \\
\Rightarrow {r_d} = 11.4\Omega \\
\]
Note Most important thing here is to notice the given values, then we can easily derive the missing quantities. Apart from that it is necessary to observe what process is straight and easy to find the rest values and then we can execute the formulas. In these types of questions interpreting the correct formula to be used is necessary unless it will get twisted.
Complete step by step answer:
Here, first we have to find sort out the given quantities:
$
T = 300K \\
V = 0.2volts \\
k = 1.38 \times {10^{ - 23}} \\
$
And the ${I_s}$ for the Germanium diode is ${10^{ - 6}}A$ where the ${I_s}$ is the saturation current.
Now we have to define the formula for the forward current through the diode, which is:
$I = {I_s}[\exp (\dfrac{{eV}}{{kT}}) - 1]$
Now the final step is just to put up the formula and obtain the value:
$
I = {I_s}[\exp (\dfrac{{eV}}{{kT}}) - 1] \\
\Rightarrow I = {10^{ - 6}}[\exp (\dfrac{{1.6*{{10}^{ - 19}}*0.2}}{{1.38*{{10}^{ - 23}}*300}}) - 1] \\
\Rightarrow I = 2.27mA \\
$
Therefore the static resistance would be
$
{r_s} = \dfrac{V}{I} \\
\Rightarrow {r_s} = \dfrac{{0.2}}{{2.27\times{{10}^{ - 3}}}} \\
\Rightarrow {r_s} = 88\Omega \\
$
And, the dynamic resistance would be:
\[
{r_d} = \dfrac{{VT}}{I} = \dfrac{{kT}}{{eI}} \\
\Rightarrow {r_d} = \dfrac{{26\times{{10}^{ - 3}}}}{{2.27\times{{10}^{ - 3}}}} \\
\Rightarrow {r_d} = 11.4\Omega \\
\]
Note Most important thing here is to notice the given values, then we can easily derive the missing quantities. Apart from that it is necessary to observe what process is straight and easy to find the rest values and then we can execute the formulas. In these types of questions interpreting the correct formula to be used is necessary unless it will get twisted.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)