
A solid sphere of radius $r$ made of a soft material of bulk modulus $K$ is surrounded by a liquid in a cylindrical container. A massless piston of area $a$ floats on the surface of the liquid, covering the entire cross section of the cylindrical container. When a mass $m$ is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere, $(\dfrac{{dr}}{r})$ is?
A) $\dfrac{{mg}}{{3Ka}}$
B) $\dfrac{{mg}}{{Ka}}$
C) \[\dfrac{{Ka}}{{mg}}\]
D) $\dfrac{{Ka}}{{3mg}}$
Answer
232.8k+ views
Hint: Use the concepts of fluids, bulk modulus and differentiation to get the answer. At first find the value of a small change of volume. Then use the equations of bulk modulus and substitute the values of force, volume and small volume change in the equation. Rearrange the terms to get the final answer.
Formula Used:
Bulk Modulus, $K = \dfrac{{PV}}{{ - dv}}$
Pressure, $P = \dfrac{{force}}{{area}}$
Volume of sphere $V = \dfrac{4}{3}\pi {r^3}$
Complete step by step answer:
Given,
Radius of the solid sphere $ = r$
Bulk modulus of the material $ = K$
Area of piston $ = a$
Mass of the object placed on the surface of the piston to compress the liquid $ = m$
We know,
$V = \dfrac{4}{3}\pi {r^3}$
Differentiating both sides we ge3t,
\[ \Rightarrow - dV = 4\pi {r^2}dr\]
Here the negative sign is there because volume decreases on applying pressure.
Also pressure,
$P = \dfrac{{force}}{{area}}$
$ \Rightarrow P = \dfrac{{mg}}{a}$
Also Bulk Modulus,
$K = \dfrac{{PV}}{{ - dv}}$
$ \Rightarrow K = \dfrac{{\dfrac{{mg}}{a} \times \dfrac{4}{3}\pi {r^3}}}{{ - dv}}$
We put \[ - dV = 4\pi {r^2}dr\] in the above equation and we get
$ \Rightarrow K = \dfrac{{\dfrac{{mg}}{a} \times \dfrac{4}{3}\pi {r^3}}}{{4\pi {r^2}dr}}$
$ \Rightarrow K = \dfrac{{mg{r^{}}}}{{3adr}}$
By rearranging the above terms, we get that,
$ \Rightarrow \dfrac{{dr}}{r} = \dfrac{{m{g^{}}}}{{3Ka}}$
Hence the correct option is (A).
Additional Information: Pressure is defined as the force per unit area. Its S.I Unit is Pascal or $Pa$. Although force is a vector quantity; pressure itself is a scalar quantity. Thus, it has no direction.
Modulus of elasticity is the measure of the stress–strain relationship on the object. There are 3 types of Modulus of elasticity: Bulk modulus, Young’s modulus and Shear modulus.
Note: Be careful while differentiating the terms. One should know how to use differentiation in such types of equations. Also the formulas involved in solving such tricky problems should be pretty clear. With practice you will be able to solve such types of questions.
Formula Used:
Bulk Modulus, $K = \dfrac{{PV}}{{ - dv}}$
Pressure, $P = \dfrac{{force}}{{area}}$
Volume of sphere $V = \dfrac{4}{3}\pi {r^3}$
Complete step by step answer:
Given,
Radius of the solid sphere $ = r$
Bulk modulus of the material $ = K$
Area of piston $ = a$
Mass of the object placed on the surface of the piston to compress the liquid $ = m$
We know,
$V = \dfrac{4}{3}\pi {r^3}$
Differentiating both sides we ge3t,
\[ \Rightarrow - dV = 4\pi {r^2}dr\]
Here the negative sign is there because volume decreases on applying pressure.
Also pressure,
$P = \dfrac{{force}}{{area}}$
$ \Rightarrow P = \dfrac{{mg}}{a}$
Also Bulk Modulus,
$K = \dfrac{{PV}}{{ - dv}}$
$ \Rightarrow K = \dfrac{{\dfrac{{mg}}{a} \times \dfrac{4}{3}\pi {r^3}}}{{ - dv}}$
We put \[ - dV = 4\pi {r^2}dr\] in the above equation and we get
$ \Rightarrow K = \dfrac{{\dfrac{{mg}}{a} \times \dfrac{4}{3}\pi {r^3}}}{{4\pi {r^2}dr}}$
$ \Rightarrow K = \dfrac{{mg{r^{}}}}{{3adr}}$
By rearranging the above terms, we get that,
$ \Rightarrow \dfrac{{dr}}{r} = \dfrac{{m{g^{}}}}{{3Ka}}$
Hence the correct option is (A).
Additional Information: Pressure is defined as the force per unit area. Its S.I Unit is Pascal or $Pa$. Although force is a vector quantity; pressure itself is a scalar quantity. Thus, it has no direction.
Modulus of elasticity is the measure of the stress–strain relationship on the object. There are 3 types of Modulus of elasticity: Bulk modulus, Young’s modulus and Shear modulus.
Note: Be careful while differentiating the terms. One should know how to use differentiation in such types of equations. Also the formulas involved in solving such tricky problems should be pretty clear. With practice you will be able to solve such types of questions.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

