Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

ffImage
banner

CBSE Physics Chapter 1 Units and Measurements Class 11 Notes: FREE PDF Download

Understanding the fundamentals of units and measurements is essential for understanding Physics in Class 11. Vedantu’s detailed notes for CBSE Physics Chapter 1 offer a clear and concise overview of the key concepts and principles according to the latest Class 11 Physics Syllabus. This chapter introduces you to the basics of measurement, including the importance of units, the various types of measurements, and the methods for accurate data collection. 

toc-symbolTable of Content
toggle-arrow


With these notes, you'll gain a solid foundation in how measurements are made and how they are used in scientific calculations. Perfect for quick revisions and exam preparation, our Class 11 Physics Notes help you understand complex topics simply and easily.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access Revision Notes For Class 11 Physics Chapter 1 Units and Measurement

Units:

A unit can be defined as an internationally accepted standard for measuring quantities.

  • Measurement has been included in a numeric quantity along with a specific unit.

  • The units in the case of base quantities (such as length, mass etc.) are defined as Fundamental units.

  • Derived units are the units that are the combination of fundamental units. 

  • Fundamental and Derived units constitute together as a System of Units.

  • An internationally accepted system of units can be defined as Système Internationale d’ Unites (This is how the International System of Units is represented in French) or SI. In 1971, it was produced and recommended by the General Conference on Weights and Measures.

  • The table shown below is the list of 7 base units mentioned by SI.


There are two units along with it. They are, radian or rad (unit for plane angle) and steradian or sr (unit for solid angle). Both of these are dimensionless.

Base Quantity

Name

Symbol

Length

metre

m

Mass

kilogram

kg

Time

second

s

Electric Current

ampere

A

Thermodynamic

Temperature

kelvin

K

Amount of Substance

mole

mol

Luminous intensity

candela

cd


Plane angle



Solid angle


Significant Figures

Every measurement gives us an output in a number that includes of reliable digits and uncertain digits.

Reliable digits added with the first uncertain digit can be defined as significant digits or significant figures. This represents the precision of measurement which is dependent on the least count of instrument used for measurement.

The period of oscillation of a pendulum is 1.62 s can be taken as an example. Here 1 and 6 will be reliable and 2 is uncertain. Hence, the measured value will have three significant figures.


Rules for the determination of the number of significant figures

  • All non-zero digits will be significant.

  • Irrespective of the decimal place, all zeros between two non-zero digits will be significant irrespective of the decimal place.

  • Zeroes before non-zero digits and after decimal are not considered as significant, for a value less than 1. Zero presents before the decimal place in case these numbers will be insignificant always.

  • Trailing zeroes in case of a number without any decimal place will be insignificant.

  • Trailing zeroes in case of a number with a decimal place will be significant.


Cautions for removing ambiguities in calculating the number of significant figures

  • Variation of units will not change number of significant digits. As an example, 

$\text{4}\text{.700 m=470}\text{.0 cm}$ 

$\text{              =4700 mm}$ 

Here first two quantities have 4 but the third quantity is having 2 significant figures.

  • Make use of scientific notation for reporting measurements. Numbers must be shown in powers of 10 such as \[\text{a }\!\!\times\!\!\text{ 10b}\]where b is defined as the order of magnitude. Example,

$\text{4}\text{.700 m = 4}\text{.700  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{2}}}\text{ cm }$

$\text{               = 4}\text{.700  }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ mm }$

$\text{               = 4}\text{.700  }\!\!\times\!\!\text{  1}{{\text{0}}^{\text{-3}}}\text{ km}$

Here, as the power of 10 is being irrelevant, the number of significant figures will be 4.

  • Multiplying or dividing exact numbers will give an infinite number of significant digits. Example,\[\text{radius=}\frac{\text{diameter}}{\text{2}}\]. In this case, 2 can be represented as 2, 2.0, 2.00, 2.000 and so on.


Rules for Arithmetic operation with Significant Figures

Type

Multiplication or

Division

Addition or Subtraction

Rule

The end result must retain as many significant figures as there in the initial number with the least number of significant digits.

The end result must have as many decimal places similar way as in the original number with the least decimal places.

Example

\[\text{Density=}\frac{\text{Mass}}{\text{Volume}}\]

Assume\[\text{Mass=4}\text{.237 g}\](4 significant figures)

and \[\text{Volume=2}\text{.51 c}{{\text{m}}^{3}}\]

(3 significant figures)

$\text{Density=}\frac{\text{4}\text{.237 g}}{\text{2}\text{.51 c}{{\text{m}}^{3}}}$

$\text{             =1}\text{.68804 gc}{{\text{m}}^{-3}}$ 

$\text{             =1}\text{.69 gc}{{\text{m}}^{-3}}$ 

 (3 significant figures)

Addition of 436.32 (2

digits after decimal),

227.2 (1 digit after decimal)

and .301 (3 digits after

decimal) is= 663.821

As 227.2 is precise up to only 1 decimal

place, Therefore, the end result should be 663.8.


Rules for Rounding off the uncertain digits

Rounding off will be essential for reducing the number of insignificant figures to hold to the rules of arithmetic operation with significant figures.

Rule Number

Insignificant digit

Preceding digit

Example (rounding off to two decimal places)

1

Insignificant digit to be dropped

being more than 5

Preceding digit is

raised by 1.

Number– 3.137

Result –3.14

2

Insignificant digit to be dropped

being less than 5

The preceding digit is left unchanged.

Number– 3.132

Result –3.13

3

Insignificant digit to be dropped being equal to 5

The preceding digit is even, it is left unchanged.

Number– 3.125

Result –3.12

4

Insignificant digit to be dropped

being equal to 5

When the preceding digit is odd, it is raised by 1.

Number– 3.135

Result –3.14


Rules for the determination of uncertainty in the results of arithmetic calculations

For calculating the uncertainty, the below process must be used.

  • Do a summation of the lowest amount of uncertainty in the original numbers. Example uncertainty for 3.2 will be \[\pm 0.1\] and for 3.22 will be \[\pm 0.01\].

  • Find out these in percentage also.

  • The uncertainties get multiplied/divided/added/subtracted after the calculations.

  • In the uncertainty, round off the decimal place to obtain the end uncertainty result.

For example, for a rectangle, 

Suppose length,  \[\text{l=16}\text{.2 cm}\] and breadth, \[\text{b=10}\text{.1 cm}\]

After that, take \[\text{l=16}\text{.2}\pm \text{0}\text{.1 cm}\]or \[\text{l=16}\text{.2 cm}\pm \text{0}\text{.6  }\!\!%\!\!\text{ }\] and

breadth \[\text{=10}\text{.1 }\!\!\pm\!\!\text{ 0}\text{.1 cm}\]or \[\text{10}\text{.1 cm }\!\!\pm\!\!\text{ 1  }\!\!%\!\!\text{ }\]

When we multiply,

\[\text{area=length }\!\!\times\!\!\text{ breadth=163}\text{.62 c}{{\text{m}}^{\text{2}}}\text{ }\!\!\pm\!\!\text{ 1}\text{.6  }\!\!%\!\!\text{ }\]

Or \[\text{163}\text{.62}\pm \text{2}\text{.6 c}{{\text{m}}^{\text{2}}}\]

Hence after rounding off, area\[\text{=164}\pm \text{3 c}{{\text{m}}^{\text{2}}}\].

Therefore \[\text{3 c}{{\text{m}}^{\text{2}}}\]will be the uncertainty or the error in estimation.


Rules

1. In the case of a set of experimental data of ‘n’ significant figures, the result must be accurate to ‘n’ significant figures or less (only in the case of subtraction).

For example \[\text{12}\text{.9-7}\text{.06=5}\text{.84 or 5}\text{.8}\](when we round off to least number of decimal places of original number).

2. The relative error of a value of number mentioned to significant figures will be dependent on n and on the number itself.

As an example, say the accuracy for two numbers 1.02 and 9.89 be \[\pm \text{0}\text{.01}\]. But relative errors are:

For \[\text{1}\text{.02,}\left( \frac{\text{ }\!\!\pm\!\!\text{ 0}\text{.01}}{\text{1}\text{.02}} \right)\text{ }\!\!\times\!\!\text{ 100  }\!\!%\!\!\text{ =}\pm \text{1  }\!\!%\!\!\text{ }\]

For\[\text{9}\text{.89,}\left( \frac{\text{ }\!\!\pm\!\!\text{ 0}\text{.01}}{\text{9}\text{.89}} \right)\text{ }\!\!\times\!\!\text{ 100  }\!\!%\!\!\text{ =}\pm 0.\text{1  }\!\!%\!\!\text{ }\]

Therefore, the relative error will be dependent upon the number itself.

3. The results in the intermediate step of a multi-step computation should be found to have one significant figure more in all the measurements than the number of digits in the least precise measurement.

For example:\[\frac{1}{9.58}=0.1044\]

Now, \[\frac{1}{0.104}=9.56\] and \[\frac{1}{0.1044}=9.58\]

Therefore, taking one extra digit will provide more precise outputs and reduce rounding-off errors.


Dimensions of a Physical Quantity

The powers (exponents) to which base quantities are raised to represent that quantity can be defined as dimensions of a physical quantity. They are figured as the square brackets around the quantity.

  • Dimensions of the 7 base quantities have been considered as – Length [L], time [T], Mass [M], thermodynamic temperature [K], luminous intensity [cd], electric current [A] and amount of substance [mol].

For example,

$\text{Volume=Length }\!\!\times\!\!\text{ Breadth }\!\!\times\!\!\text{ Height}$

$text{=}\left[ \text{L} \right]\text{ }\!\!\times\!\!\text{ }\left[ \text{L} \right]\text{ }\!\!\times\!\!\text{ }\left[ \text{L} \right]\text{=}{{\left[ \text{L} \right]}^{\text{3}}}$ 

$\text{Force=Mass }\!\!\times\!\!\text{ Acceleration}$

$\text{=}\frac{\left[ \text{M} \right]\left[ \text{L} \right]}{{{\left[ \text{T} \right]}^{\text{2}}}}\text{=}\left[ \text{M} \right]\left[ \text{L} \right]{{\left[ \text{T} \right]}^{\text{-2}}}$

  • The other dimensions for a quantity will be always 0. As an example, in the case of volume only length has 3 dimensions but the mass, time

etc will have 0 dimensions. Zero dimension is shown by superscript 0 like \[\left[ {{\text{M}}^{0}} \right]\].

Dimensions will not affect the magnitude of a quantity Dimensional formula and Dimensional Equation

The expression that represents how and which of the base quantities represent the dimensions of a physical quantity is defined as a Dimensional Formula.

An equation we got after equating a physical quantity with its dimensional formula is a Dimensional Equation.

Physical Quantity

Dimensional Formula

Dimensional Equation

Volume

\[\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]\]

\[\left[ \text{V} \right]\text{=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{3}}}{{\text{T}}^{\text{0}}} \right]\]

Speed

\[\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{-1}}} \right]\]

\[\left[ \nu  \right]\text{=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{-1}}} \right]\]

Force

\[\left[ \text{ML}{{\text{T}}^{-2}} \right]\]

\[\left[ \text{F} \right]\text{=}\left[ \text{ML}{{\text{T}}^{-2}} \right]\]

Mass Density

\[\left[ \text{M}{{\text{L}}^{-3}}{{\text{T}}^{0}} \right]\]

\[\left[ \rho  \right]\text{=}\left[ \text{M}{{\text{L}}^{-3}}{{\text{T}}^{0}} \right]\]


Dimensional Analysis

  • The physical quantities that have similar dimensions only can be added and subtracted. This can be named as the principle of homogeneity of dimensions.

  • Dimensions are multipliable and can be cancelled as normal algebraic methods.

  • Quantities on both sides should always have identical dimensions, in mathematical equations.

  • Arguments of special functions such as trigonometric, logarithmic and ratio of similar physical quantities will be dimensionless.

  • Equations will be uncertain to the extent of dimensionless quantities.

As an example, say Distance = Speed x Time. In Dimension terms, 

\[\left[ \text{L} \right]\text{=}\left[ \text{L}{{\text{T}}^{\text{-1}}} \right]\text{ }\!\!\times\!\!\text{ }\left[ \text{T} \right]\]

As the dimensions can be cancelled as we do in algebra, dimension \[\left[ \text{T} \right]\] will get cancelled and the equation will be \[\left[ \text{L} \right]\text{=}\left[ \text{L} \right]\].


Applications of Dimensional Analysis

When we check the Dimensional Consistency of equations

  • A dimensionally correct equation should have identical dimensions on both sides of the equation.

  • There is no need for a dimensionally correct equation to be a correct equation but a dimensionally incorrect equation will be always incorrect. Dimensional validity can be tested but not calculate the correct relationship between the physical quantities.

Example, \[\text{x=}{{\text{x}}_{\text{0}}}\text{+}{{\text{ }\!\!\nu\!\!\text{ }}_{\text{0}}}\text{t+}\left( \frac{\text{1}}{\text{2}} \right)\text{a}{{\text{t}}^{\text{2}}}\]

Or, Dimensionally, \[\left[ \text{L} \right]\text{=}\left[ \text{L} \right]\text{+}\left[ \text{L}{{\text{T}}^{\text{-1}}} \right]\left[ \text{T} \right]\text{+}\left[ \text{L}{{\text{T}}^{\text{-2}}} \right]\left[ {{\text{T}}^{\text{2}}} \right]\]

Where, \[\text{x}\] be the distance travelled in time t,

\[{{\text{x}}_{0}}\]– starting position,

\[{{\nu }_{0}}\]- initial velocity,

\[\text{a}\]– uniform acceleration.

Dimensions on both sides will be [L] because [T] get cancelled out. Therefore this will be a dimensionally correct equation.


Deducing relation among physical quantities

  • For deducing a relation among physical quantities, we must know the dependence of one quantity over others (or independent variables) and assume it as a product type of dependence.

  • Dimensionless constants will not be obtainable by the use of this method.

We can take an example, 

\[\text{T=k}{{\text{l}}^{\text{x}}}{{\text{g}}^{\text{y}}}{{\text{m}}^{\text{z}}}\]

Or,

$\left[ {{\text{L}}^{\text{0}}}{{\text{M}}^{\text{0}}}{{\text{T}}^{\text{1}}} \right]\text{=}{{\left[ {{\text{L}}^{\text{1}}} \right]}^{\text{x}}}{{\left[ {{\text{L}}^{\text{1}}}{{\text{T}}^{\text{-2}}} \right]}^{\text{y}}}{{\left[ {{\text{M}}^{\text{1}}} \right]}^{\text{z}}}$ 

$\text{                =}\left[ {{\text{L}}^{\text{x+y}}}{{\text{T}}^{\text{-2y}}}{{\text{M}}^{\text{z}}} \right]$

This means that, \[\text{x+y=0,-2y=1 and z=0}\]. So \[\text{x=}\frac{1}{2}\text{,y=-}\frac{1}{2}\text{ and z=0}\].

Hence the original equation will be reduced to \[\text{T=k}\sqrt{\frac{\text{l}}{\text{g}}}\].


Section–A (1 Mark Questions)

1. What is an error? 

Ans. An error is a mistake of some kind causing an error in your results, so the result is not accurate.


2. Find the number of the significant figures in $11\cdot 118\times 10^{-6}V$.

Ans. The number of significant figures is 5 as 10−6 does not affect this number.


3. A physical quantity P is given by $P=\dfrac{A^{5}B^{\dfrac{1}{2}}}{C^{-4}D^{\dfrac{3}{2}}}$ . Find the quantity which brings in the maximum percentage error in P.

Ans. Quantity C has maximum power. So it brings maximum error in P.


4. What is the difference between accuracy and precision?

Ans. Accuracy is an indication of how close a measurement is to the accepted value.

  • An accurate experiment has a low systematic error.

Precision is an indication of the agreement among several measurements.  

  • A precise experiment has a low random error.


difference between accuracy and precision


5. Find the value of a for which $m=\dfrac{1}{\sqrt{3}}$ is a root of the equation $am^{2}+(\sqrt{3}-\sqrt{2})m-1=0$ .

Ans. Put $m=\dfrac{1}{\sqrt{3}}\Rightarrow \dfrac{a}{3}+(\sqrt{3}-\sqrt{2})\dfrac{1}{\sqrt{3}}-1=0$

$\Rightarrow a_+(3-\sqrt{6})-3=0$

So, a = $\sqrt{6}$


Section – B (2 Marks Questions)

6. A force F is given by $F=at+bt^{2}$ , where t is time. What are the dimensions of a and b?

Ans. From the principle of dimensional homogeneity $\left [ F \right ]=\left [ at \right ]\therefore \left [ a \right ]=\left [ \dfrac{F}{t} \right ]=\left [ \dfrac{MLT^{-2}}{T} \right ]=\left [ MLT^{-3} \right ]$

Similarly, $\left [ F \right ]=\left [ bt^{2} \right ]\therefore \left [ b \right ]=\left [ \dfrac{F}{t^{2}} \right ]=\left [ \dfrac{MLT^{-2}}{T^{2}} \right ]=\left [ MLT^{-4} \right ]$ .


7. Let l, r, c, and v represent inductance, resistance, capacitance, and voltage, respectively. Find the dimension of 1/rcv in SI units.  

Ans. Dimension of inductance = [M1L2T−2A−2] = [l]

Dimension of capacitance = [M−1L−2T4A2] = [c]

Dimension of resistance = [M1L2T−3A−2] = [r]

Dimension of voltage = [M1L2T−3A−1] = [v]

Dimension of l/rcv = 

M1L2T−2A−2] / [M−1L2T4A2][M1L2T−3A−2]

[M1L2T−3A−1]
= [ML2T−2A−2]/[ML2T−2A−1]

= [A−1]


8. P represents radiation pressure, c represents speed of light and S represents radiation energy striking unit area per sec. Find the nonzero integers x, y, z such that $P^{x}S^{y}c^{z}$ is dimensionless.

Ans. Try out the given alternatives.

When x = 1, y = −1, z = 1

$P^{x}S^{y}c^{z}=P^{-1}S^{-1}c^{1}=\dfrac{Pc}{S}$

$=\dfrac{\left [ ML^{-1}T^{-2} \right ]\left [ LT^{-1} \right ]}{\left [ \dfrac{ML^{2}T^{-2}}{L^{2}T} \right ]}=\left [ M^{0}L^{0}T^{0} \right ]$


9. The length and breadth of a metal sheet are 3.124 m and 3.002 m respectively. Find the area of this sheet up to the correct significant figure is

Ans. $A=3\cdot 124m\times 3\cdot 002m$

$A=\dfrac{9\cdot 738248}{248m^{2}}$

$=9\cdot 378m^{2}$


10. A certain body weighs 22.42 gm and has a measured volume of 4.7 cc. The possible errors in the measurement of mass and volume are 0.01 gm and 0.1 cc. Then find the maximum error in the density.

Ans. $D=\dfrac{M}{V}\therefore %\dfrac{\Delta D}{D}=%\dfrac{\Delta M}{M}+%\dfrac{\Delta V}{V}=\left ( \dfrac{0\cdot 01}{22\cdot 42}-\dfrac{0\cdot 1}{4\cdot 7} \right )\times 100=2%$


5 Important Topics of Class 11 Physics Chapter 1 Units and Measurements:

S. No

Topics

1

systems of Units

2

Significant figures

3

Dimensions of physical quantities

4

Dimensional formulae and dimensional equations

5

Dimensional analysis and its applications


Importance of Class 11 Physics Chapter 1 Units and Measurement Revision Notes 

Vedantu's Units and Measurements Class 11 Notes offer students a valuable resource to grasp the fundamental concepts of physics. By using Vedantu's notes, students can enhance their problem-solving skills and develop a strong foundation in physics, empowering them to excel in their academic pursuits. Here are some points that explain the Importance of Units and Measurements Class 11 Notes PDF Download:


  • Vedantu's Class 11 Physics Chapter 1 Notes provide a comprehensive understanding of fundamental concepts in physics.

  • These notes cover topics such as SI units, dimensional analysis, and measurements with precision.

  • They offer clear explanations and examples to aid in conceptual clarity and application of theories.

  • Vedantu's notes facilitate effective revision and preparation for exams by condensing complex concepts into concise summaries.

  • With Class 11 Units and Measurements Notes, students can enhance their problem-solving skills and achieve mastery in the subject, laying a strong foundation for future studies in physics.


Tips for Learning the Class 11 Chapter 1  Physics Units and Measurement

  • Start by understanding the basic concepts of units and measurement. Learn about different types of units, such as SI units and derived units, and their importance.

  • Apply what you learn to real-life examples. Measure objects around you using different units to see how measurements work in practice.

  • Practise converting between different units, like metres to centimetres or kilograms to grams. This helps reinforce your understanding of unit relationships.

  • Focus on key formulas related to measurement, such as those for calculating density, speed, and other derived quantities. Know how and when to use these formulas.

  • Review measurement techniques and tools. Learn how to use tools like callipers and micrometres correctly.

  • Solve practice problems to test your understanding. This helps you apply concepts and formulas in different scenarios.

  • Create summary notes and revise regularly. Highlight important points, definitions, and units to make revision easier.


Conclusion

Class 11 Physics Chapter 1 Units and Measurements Notes offered by Vedantu is an excellent resource for students who want to excel in their physics studies. The Class 11 Units and Measurements Notes provide a comprehensive and detailed explanation of the concepts of units and measurement, including the SI units, dimensions, and errors, making it easier for students to understand and improve their physics skills. The notes also include practice exercises and questions that help students test their understanding of the chapter and prepare for their exams. Vedantu also provides interactive live classes and doubt-solving sessions to help students clarify their doubts and improve their understanding of the chapter. Overall, the Units And Measurements Class 11 Notes PDF offered by Vedantu is an essential resource for students who want to improve their physics skills and score well in their exams.


Related Study Materials for Class 12 Physics Chapter 1


Chapter-wise Links for Physics Notes For Class 11 PDF FREE Download


Related Study Materials Links for Class 11 Physics

Along with this, students can also download additional study materials provided by Vedantu for Physics Class 11–

FAQs on Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

1. What Concepts Are Covered in the First Chapter of Class 11 Units and Measurements Notes?

Class 11 Chapter - 1 Physics will strengthen the basic concepts of the following topics.


  • The importance of accurate measurements in physics.

  • Different systems of units and the International System of Units (SI).

  • Fundamental quantities and their units (length, mass, time, etc.).

  • Derived quantities and their units (speed, density, etc.).

  • Precision and accuracy in measurements.

  • Techniques and tools for measuring physical quantities.

  • How to convert between different units and perform dimensional analysis.

  • The concept of significant figures and their role in measurement accuracy.

You will also understand the need for S.I. units and how they are decided in this chapter.

2. Is NCERT Enough for Class 11 Physics?

NCERT builds the base of all the concepts. However, for staying updated with the latest trends of the questions being asked in the previous years, you need to look for online resources. We have provided all the materials on our website.

3. Write the Name of Seven Fundamental Dimensions.

Seven fundamental dimensions are as follows.

  1. Temperature

  2. Mass

  3. Length

  4. Time

  5. Amount of light

  6. Amount of Matter

  7. Electric Current

4. Why is dimensional analysis important in theClass 11 Physics Units And Measurements Notes?

Dimensional analysis is important because it helps verify the correctness of equations and conversions, ensuring that physical quantities are correctly represented and calculations are accurate.

5. Should I study from Vedantu Class 11 Physics notes for the First Chapter?

Students can study from the Class 11 Physics Chapter 1 Revision Notes. Class 11 Physics Revision Notes can help students to understand the concepts of Chapter 1. Class 11 Revision Notes are prepared by experienced Physics teachers. They collect information from different sources that are reliable and informative. All textbook questions are covered here with answers. Students can easily study for Class 11 Physics from the notes available free of cost on Vedantu website. p

6. What are the important topics given in Units and Measurements Class 11 Notes PDF Download?

Class 11 Physics Chapter 1 is based on units and measurement. Students will study the different units and measurement systems. They will study different units used for measuring length, time, and distance. The important topics given in Class 11 Physics Chapter 1 include absolute errors, SI units, significant figures, and dimensional analysis. It is an important chapter for the exams. Students can understand the topics given in Class 11 Physics Chapter 1 from the notes given on the Vedantu website.

7. What do you understand by dimensional analysis according to Chapter 1 of Class 11 Physics?

Dimensional analysis means measuring the size and shape of objects. It means giving the dimensions of an object using mathematical calculations. It helps to know the quantity of an object or the size of an object. The quantities having the same dimensions can be added or subtracted. We can also compare the quantities with the same dimensions. If two physical quantities have the same dimensions, they are equal to each other.


8. How can Vedantu help me in preparing for Chapter 1 of Class 11 Physics?

Vedantu is a learning website that offers free NCERT Solutions, important questions, and notes for all classes. Students of Class 11 can prepare Chapter 1 of Physics from the Vedantu website. They can study from the revision notes, important questions, and NCERT solutions given for Class 11 Physics. Students can easily understand the concepts of Class 11 Physics from the simple notes given on Vedantu.

9. How can I score high marks in Class 11 Physics Chapter 1 Units and Measurements?

Students can score high marks in Chapter 1 of Class 11 Physics by downloading the Revision Notes on their computers. They can download the Class 11 Physics Notes for Chapter 1 free of cost from Vedantu. Students can understand the concepts of Class 11 Physics Chapter 1 from the notes to score high marks. Simply visit the official Vedantu website and choose the subject and the chapter of your choice. You will notice a download PDF option. Clicking on it will save the solutions on your device and you can refer

10. What is the short note of unit and measurement?

In science, units and measurement act as the rulers and scales for our observations. Units are standard references for properties like length (meters) or time (seconds), while measurement assigns a specific value using that unit (e.g., 2 meters). Standardized units (like the International System of Units) ensure everyone speaks the same scientific language, fostering accurate and comparable results across experiments. From simple comparisons to complex calculations, units and measurement are the foundation for quantifying our world.

11. What are the units of measurement class 11 Physics?

In Class 11, you'll delve deeper into units of measurement, particularly focusing on the International System of Units (SI). Here's a quick breakdown:


The SI system is the globally accepted standard for units of measurement. It consists of seven base units:


  • Meter (m): Length

  • Kilogram (kg): Mass

  • Second (s): Time

  • Ampere (A): Electric current

  • Kelvin (K): Thermodynamic temperature

  • Mole (mol): Amount of substance

  • Candela (cd): Luminous intensity


Derived Units: These are units formed by combining base units. Examples include:


  • Meter per second (m/s): Velocity

  • Square meter (m²): Area

  • Kilogram per cubic meter (kg/m³): Density

  • Joule (J): Energy (derived from kg∙m²/s²)


Unit Prefixes: Prefixes like kilo (10^3), centi (10^-2), and nano (10^-9) are used to represent multiples or fractions of base units for convenience.

12. Which topics are important in Unit and Measurement Class 11 Notes?

In Units & Measurements (Class 11), master the SI system (meter, kilogram, second, etc.) and how it forms derived units (velocity, area). Learn prefixes (kilo-, centi-) for convenience.  Dimensional analysis and unit conversions might also be covered, depending on your curriculum.

13. What is the importance of measurement in Unit and Measurement Class 11 Notes?

Without measurement, physics would be all talk and no action. Physics (Class 11) is all about quantifying the world. Measurement is key! It lets you:


  • Describe things with numbers (length, time, force)

  • Build physics laws (think Newton's laws!)

  • Compare experiments and results

  • Solve problems and predict future behavior

14.  Are these Class 11 Physics Chapter 1 Units and Measurements Notes based on the latest CBSE syllabus?

Yes, Class 11 Physics Chapter 1 Units and Measurements Notes are aligned with the latest CBSE syllabus, ensuring that students cover all the topics prescribed by the board.

15. Are Unit and Dimensions Class 11 Notes suitable for self-study?

Yes, Unit and Dimensions Class 11 Notes are well-suited for self-study purposes. These notes are designed to provide comprehensive coverage of the topic, including explanations of fundamental concepts, examples, and practice problems. They are structured in a way that allows students to study at their own pace and reinforce their understanding through self-assessment. Additionally, the notes may include tips and strategies for effective learning and problem-solving. Whether you are studying independently or preparing for exams, these notes serve as a valuable resource for enhancing your understanding of units and measurements in physics.