
A man m = 80kg is standing on a trolley of mass 320kg on a smooth surface. If man starts walking on trolley along rails at speed 1m/s, then after 4 seconds, his displacement from the ground.
Answer
236.4k+ views
Hint: Here to make the center of mass stay the same, the trolley will move in the direction opposite to the man walking. Here the man has walked the distance of 4m relative to the trolley as $d = s \times t$, where d = distance, s = speed, t = time. So, $d = 4(s) \times 1(m/s) = 4m$. Let’s suppose the trolley travelled x distance relative to ground so the net displacement of the man would be 4-x. The formula for center of mass is${m_1}{x_1} = {m_2}{x_2}$. Where ${m_1}$= Mass of object 1; ${m_2}$= Mass of object 2; ${x_1}$= distance covered by object 1; ${x_2}$= Distance covered by object 2. Apply this formula and solve.
Formula Used:
The formula for center of mass is given as
${m_1}{x_1} = {m_2}{x_2}$
Where:
${m_1}$= Mass of object 1 (80kg)
${m_2}$ = Mass of object 2 (320kg)
${x_1}$= Distance covered by object 1 (4-x)
${x_2}$= Distance covered by object 2 (x)
Complete step by step answer:
Apply the formula for the center of mass
${m_1}{x_1} = {m_2}{x_2}$
Put the given values in the equation and simplify it.
$\implies$ $80 \times (4 - x) = 320 \times x$
Separate x on the RHS and the numerical value on the LHS
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Solve, for the unknown x, which is the distance covered by the train relative to ground.
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Simplify the above equation
$\implies$ \[(4 - x) = 4 \times x\]
$\therefore $ \[x = \dfrac{4}{5}\]
x = 0.8m;
The net displacement of the man is 4-0.8= 3.2m.
Final Answer: The net displacement of the man is 3.2m
Note:We can also solve this by applying conservation of linear momentum. In this question the total net external force on the system is zero. According to the conservation of momentum the momentum of man walking forward would be equal to the momentum of the entire system in the backward direction then only the conservation of linear momentum would be valid.
${m_1} \times {v_1} = {m_2} \times {v_2}$;
Here:
$\implies$ ${m_1}$= Mass of the object 1;
$\implies$ ${v_1}$= Velocity of the object 1;
$\implies$ ${m_2}$= Mass of the object 2;
$\implies$ ${v_2}$= Velocity of the object 2;
Put the value in the above equation and solve,
$\implies$ $80 \times 1 = (80 + 320) \times {v_2}$; ….(Here ${m_2}$= Mass of the man + Mass of the trolley )
Keep${v_2}$ in the RHS and take the rest to LHS.
$\implies$ $\dfrac{{80}}{{80 + 320}} = {v_2}$;
$\implies$ ${v_2} = 0.2m/s$;
Here the velocity of man with respect to ground is = ${v_1} - {v_2}$;
$\implies$ $1 - 0.2 = 0.8m/s$;
Now we the formula for speed, distance and time:
$\implies$ $S = \dfrac{D}{T}$ ;
Rearrange the above equation and solve for D
$\implies$ $S \times T = D$;
$\implies$ $D = 0.8 \times 4$;
$\implies$ D = 3.2m;
One has to apply the concept of center of mass and apply its formula. Here to conserve the center of mass the train is moving in the opposite direction and that is why we subtract the distance covered by the trolley to the distance covered by the man on the trolley.
Formula Used:
The formula for center of mass is given as
${m_1}{x_1} = {m_2}{x_2}$
Where:
${m_1}$= Mass of object 1 (80kg)
${m_2}$ = Mass of object 2 (320kg)
${x_1}$= Distance covered by object 1 (4-x)
${x_2}$= Distance covered by object 2 (x)
Complete step by step answer:
Apply the formula for the center of mass
${m_1}{x_1} = {m_2}{x_2}$
Put the given values in the equation and simplify it.
$\implies$ $80 \times (4 - x) = 320 \times x$
Separate x on the RHS and the numerical value on the LHS
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Solve, for the unknown x, which is the distance covered by the train relative to ground.
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Simplify the above equation
$\implies$ \[(4 - x) = 4 \times x\]
$\therefore $ \[x = \dfrac{4}{5}\]
x = 0.8m;
The net displacement of the man is 4-0.8= 3.2m.
Final Answer: The net displacement of the man is 3.2m
Note:We can also solve this by applying conservation of linear momentum. In this question the total net external force on the system is zero. According to the conservation of momentum the momentum of man walking forward would be equal to the momentum of the entire system in the backward direction then only the conservation of linear momentum would be valid.
${m_1} \times {v_1} = {m_2} \times {v_2}$;
Here:
$\implies$ ${m_1}$= Mass of the object 1;
$\implies$ ${v_1}$= Velocity of the object 1;
$\implies$ ${m_2}$= Mass of the object 2;
$\implies$ ${v_2}$= Velocity of the object 2;
Put the value in the above equation and solve,
$\implies$ $80 \times 1 = (80 + 320) \times {v_2}$; ….(Here ${m_2}$= Mass of the man + Mass of the trolley )
Keep${v_2}$ in the RHS and take the rest to LHS.
$\implies$ $\dfrac{{80}}{{80 + 320}} = {v_2}$;
$\implies$ ${v_2} = 0.2m/s$;
Here the velocity of man with respect to ground is = ${v_1} - {v_2}$;
$\implies$ $1 - 0.2 = 0.8m/s$;
Now we the formula for speed, distance and time:
$\implies$ $S = \dfrac{D}{T}$ ;
Rearrange the above equation and solve for D
$\implies$ $S \times T = D$;
$\implies$ $D = 0.8 \times 4$;
$\implies$ D = 3.2m;
One has to apply the concept of center of mass and apply its formula. Here to conserve the center of mass the train is moving in the opposite direction and that is why we subtract the distance covered by the trolley to the distance covered by the man on the trolley.
Recently Updated Pages
A man m 80kg is standing on a trolley of mass 320kg class 11 physics JEE_MAIN

An ideal liquid is oscillating in a V tube as shown class 11 physics JEE_Main

Two persons of masses 55kg and 65kg respectively are class 11 physics JEE_Main

Which one of the following substances possess the highest class 11 physics JEE_Main

Four identical rods which have thermally insulated class 11 physics JEE_Main

Figure shows the PV plot of an ideal gas taken through class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Session 1 Results Out and Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Electromagnetic Waves and Their Importance

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

CBSE Notes Class 11 Physics Chapter 4 - Laws of Motion - 2025-26

CBSE Notes Class 11 Physics Chapter 14 - Waves - 2025-26

CBSE Notes Class 11 Physics Chapter 9 - Mechanical Properties of Fluids - 2025-26

CBSE Notes Class 11 Physics Chapter 11 - Thermodynamics - 2025-26

CBSE Notes Class 11 Physics Chapter 1 - Units And Measurements - 2025-26

