
Which one has the highest paramagnetism [AMU 2001]
(A) $[Ni{{(CO)}_{4}}]$
(B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Answer
139.8k+ views
Hint: The electronic configuration of the metal ions that are present in the complexes must first be determined. The pairing of electrons occurs depending on the strength of the ligands attached to the metal. If any unpaired electron remains in the complex, then it is paramagnetic in nature. The greater the number of unpaired electrons, the greater is the paramagnetism. However, if no unpaired electron remains in the complex, then it is diamagnetic in nature.
Complete answer:The electronic configurations of the metal ions present in the solution are as shown:
(A) $[Ni{{(CO)}_{4}}]$
$N{{i}^{{}}}$- $[Ar]3{{d}^{8}}$
$CO$ is a strong ligand. It induces a pairing of electrons as four $CO$ ligands approach the nickel metal. So, it is diamagnetic.
B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$C{{u}^{2+}}$- $[Ar]3{{d}^{9}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the copper metal, but still, an electron remains unpaired. Hence, it is diamagnetic.
Thus, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$has highest paramagnetism.
Correct Option: (D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Note: The coordination compound complexes have magnetic properties. A molecule's magnetic characteristics are determined by the number of unpaired electrons in it, and magnetism is produced by electronic spin. The complexes typically display the three types of magnetism: ferromagnetism, paramagnetism, and diamagnetism.
Complete answer:The electronic configurations of the metal ions present in the solution are as shown:
(A) $[Ni{{(CO)}_{4}}]$
$N{{i}^{{}}}$- $[Ar]3{{d}^{8}}$
$CO$ is a strong ligand. It induces a pairing of electrons as four $CO$ ligands approach the nickel metal. So, it is diamagnetic.
B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$C{{u}^{2+}}$- $[Ar]3{{d}^{9}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the copper metal, but still, an electron remains unpaired. Hence, it is diamagnetic.
Thus, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$has highest paramagnetism.
Correct Option: (D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Note: The coordination compound complexes have magnetic properties. A molecule's magnetic characteristics are determined by the number of unpaired electrons in it, and magnetism is produced by electronic spin. The complexes typically display the three types of magnetism: ferromagnetism, paramagnetism, and diamagnetism.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
