
The unit of permittivity of free space, $\varepsilon \circ $ is
(A) $\mathop {coulomb/newton - metre}\nolimits^{} $
(B) $\mathop {newton - metre}\nolimits^2 /\mathop {coulomb}\nolimits^2 $
(C) $\mathop {\mathop {coulomb}\nolimits^2 /newton}\nolimits^{} - \mathop {metre}\nolimits^2 $
(D) $\mathop {\mathop {coulomb}\nolimits^2 /(newton - \mathop {metre)}\nolimits^{} }\nolimits^2 $
Answer
177.9k+ views
Hint: permittivity of resistance to the electric field. Generally, permittivity of free space is represented by Farad/meter. Here the options are in the terms of charge, force and length. To find that unit, we can use coulomb’s law. Coulomb’s law can be written as $F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
Complete step by step solution
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum of free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of $\mathop {8.85 \times 10}\nolimits^{ - 12} Farad/meter$
According to coulomb’s law, the force between two charges can be written as,
$F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
$ \in \circ = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \mathop {Fr}\nolimits^2 }}$
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
$ \Rightarrow \dfrac{{C.C}}{{\mathop {N.m}\nolimits^2 }}$
$ \Rightarrow \mathop C\nolimits^2 \mathop N\nolimits^{ - 1} \mathop m\nolimits^{ - 2} $
So, the correct option is D.
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. it doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Complete step by step solution
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum of free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of $\mathop {8.85 \times 10}\nolimits^{ - 12} Farad/meter$
According to coulomb’s law, the force between two charges can be written as,
$F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
$ \in \circ = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \mathop {Fr}\nolimits^2 }}$
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
$ \Rightarrow \dfrac{{C.C}}{{\mathop {N.m}\nolimits^2 }}$
$ \Rightarrow \mathop C\nolimits^2 \mathop N\nolimits^{ - 1} \mathop m\nolimits^{ - 2} $
So, the correct option is D.
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. it doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Degree of Dissociation and Its Formula With Solved Example for JEE

What is Hybridisation in Chemistry?

Electron Gain Enthalpy and Electron Affinity for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions
