
The relation between frequency (f) and time period (T) is given by
A) ${\rm{f}} = {\rm{T}}$
B) ${\rm{f}} = \dfrac{1}{{\rm{T}}}$
C) ${\rm{T}} = {{\rm{f}}^{\rm{2}}}$
D) ${\rm{T}} = {{\rm{f}}^3}$
Answer
526.5k+ views
Hint: The frequency is the number of occurrences of a repeating event per unit of time. The frequency is used to measure in terms of Hertz. The value of one Hertz equals the one occurrence of a repeating event per second.
Complete step by step answer:
In the given question, we are talking about the periodic phenomenon. Here the frequency is the number of times it repeats itself, and the period is the amount of time it takes to repeat itself.
We know that frequency and time period are the inversely proportional quantities form the definition of the frequency and time period.
${\rm{f}} = \dfrac{1}{{\rm{T}}}$
Here, the time period is ${\rm{T}}$ and the frequency is ${\rm{f}}$.
In the derived relation, the unit for time is second, and the unit for frequency is Hertz (periods per second or cycle per second).
The frequency and period are inverse functions because when the frequency is high, then the time period is low, or when the time period is low, then the frequency is increased.
Thus, the relation between frequency ($f$) and time period ($T$) is given by ${\rm{f}} = \dfrac{1}{{\rm{T}}}$. Hence, from the given options, only option B is correct.
Note:
The time period is defined as the time taken to complete a cycle of the given function. The SI unit of the time period is second. On the other hand, the frequency is defined as the number of cycles of the given function completed in the unit time. The SI unit for frequency is $sec^{-1}$
Complete step by step answer:
In the given question, we are talking about the periodic phenomenon. Here the frequency is the number of times it repeats itself, and the period is the amount of time it takes to repeat itself.
We know that frequency and time period are the inversely proportional quantities form the definition of the frequency and time period.
${\rm{f}} = \dfrac{1}{{\rm{T}}}$
Here, the time period is ${\rm{T}}$ and the frequency is ${\rm{f}}$.
In the derived relation, the unit for time is second, and the unit for frequency is Hertz (periods per second or cycle per second).
The frequency and period are inverse functions because when the frequency is high, then the time period is low, or when the time period is low, then the frequency is increased.
Thus, the relation between frequency ($f$) and time period ($T$) is given by ${\rm{f}} = \dfrac{1}{{\rm{T}}}$. Hence, from the given options, only option B is correct.
Note:
The time period is defined as the time taken to complete a cycle of the given function. The SI unit of the time period is second. On the other hand, the frequency is defined as the number of cycles of the given function completed in the unit time. The SI unit for frequency is $sec^{-1}$
Recently Updated Pages
NCERT Solutions For Class 4 English Marigold (Poem) - Don’t Be Afraid Of The Dark

NCERT Solutions For Class 5 English Marigold (Poem) - Class Discussion

NCERT Solutions For Class 5 English Marigold - Gullivers Travels

NCERT Solutions For Class 5 Hindi Rimjhim - Bagh Aaya Uss Raat

NCERT Solutions For Class 8 Hindi Bharat Ki Khoj - Tanaav

NCERT Solutions For Class 12 Maths - Differential Equations

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
