
When light waves suffers reflection at the interface from air to glass, the change in phase of reflected waves is equal to:
A $0$
B $\dfrac{\pi }{2}$
C $\pi $
D $2\pi $
Answer
439.5k+ views
Hint As we know reflection of the wave takes place when a light wave falls on the surface, and definitely there would be an angle of reflection as the refractive index of air and glass are different and glass is denser than air.
Complete Step By Step Solution
Reflection of light wave: the reflection of light happens when light waves fall on the surface and that surface can’t absorb the energy of light waves then the light waves get reflected at a certain angle, known as angle of reflection.
The angle of reflection: The angle between the reflected wave and normal is known as the angle of reflection. The angle of reflection depends on the refractive index of the material.
Refractive index: refractive index of a material tells us how fast a light wave can travel in a particular material. The Refractive index is a dimensionless number.
Now, come to the question, when a light wave suffers reflection at the interface from air to glass, it experiences a change in phase because the refractive index of glass is more than air, as we know that air is a rarer medium and glass is denser medium. So, the change in phase of the reflected wave is $\pi $.
Hence, option C is the right answer
Note The point to be noted is we should know that when a light wave travels from rarer to denser than the phase of the incident wave change with angle $\pi $ and when it travels from denser to rare then the phase of the incident wave does not change.
Complete Step By Step Solution
Reflection of light wave: the reflection of light happens when light waves fall on the surface and that surface can’t absorb the energy of light waves then the light waves get reflected at a certain angle, known as angle of reflection.
The angle of reflection: The angle between the reflected wave and normal is known as the angle of reflection. The angle of reflection depends on the refractive index of the material.
Refractive index: refractive index of a material tells us how fast a light wave can travel in a particular material. The Refractive index is a dimensionless number.
Now, come to the question, when a light wave suffers reflection at the interface from air to glass, it experiences a change in phase because the refractive index of glass is more than air, as we know that air is a rarer medium and glass is denser medium. So, the change in phase of the reflected wave is $\pi $.
Hence, option C is the right answer
Note The point to be noted is we should know that when a light wave travels from rarer to denser than the phase of the incident wave change with angle $\pi $ and when it travels from denser to rare then the phase of the incident wave does not change.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

The perfect formula used for calculating induced emf class 12 physics JEE_Main

Collision - Important Concepts and Tips for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Charging and Discharging of Capacitor

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE
