
Intensity of the central fringe in interference pattern is $0.01\;{\text{W}}/{{\text{m}}^2}$ then find intensity at a point having path difference $\lambda /3$ on screen from center in ${\text{mW}}/{{\text{m}}^2}$.
(1) 2.5 (2) 5 (3) 7.5 (4) 10
Answer
165.9k+ views
Hint: The above problem can be solved by using the principle of interference. There are two types of the fringes formed in the interference pattern, first one is the bright fringe and other one is the dark fringes. The intensity of the fringe varies with the distance from the screen, distance between the slits and phase angle.
Complete step by step answer
Given,
The intensity of the central fringe is ${I_c} = 0.01\;{\text{W}}/{{\text{m}}^2}$.
The path difference at a point is $\Delta x = \lambda /3$.
The equation to calculate the intensity of reference fringe is given as:
$\Rightarrow {I_c} = 4{I_0}{\cos ^2}\left( {\phi /2} \right)......\left( 1 \right)$
Here,$\phi $ is the phase angle and its value for the central fringe is $0^\circ $.
Substitute $\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2}$for ${I_c}$ and $0^\circ $for $\phi $ in the equation (1) to find the reference intensity.
$\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2} = 4{I_0}\left( {{{\cos }^2}\left( {0^\circ } \right)/2} \right)$
$\Rightarrow {I_0} = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
The equation to calculate the phase angle for the point at which the intensity is to be find is,
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda } \times \Delta x......\left( 2 \right)$
Substitute $\lambda /3$for $\Delta x$ in the equation (2) to find the phase angle at the point.
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda }\left( {\dfrac{\lambda }{3}} \right)$
$\Rightarrow \alpha = \dfrac{{2\pi }}{3}$
The equation to find the intensity at a point is given as:
$\Rightarrow I = {I_0}{\cos ^2}\left( {\dfrac{\alpha }{2}} \right)......\left( 3 \right)$
Substitute $\Rightarrow \dfrac{{2\pi }}{3}$for $\alpha $ and $2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$for ${I_0}$ in the equation (3) to find the intensity at the point.
$\Rightarrow I = 4\left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {{{\cos }^2}\left( {\dfrac{{\dfrac{{2\pi }}{3}}}{2}} \right)} \right)$
$\Rightarrow I = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
$\Rightarrow I = \left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {\dfrac{{1\;{\text{mW}}/{{\text{m}}^2}}}{{{{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}}}} \right)$
$\Rightarrow I = 2.5\;{\text{mW}}/{{\text{m}}^2}$
Thus, the find intensity at a point having path difference $\lambda /3$ on screen from center is $2.5\;{\text{mW}}/{{\text{m}}^2}$ and the option (1) is the correct answer.
Note: Calculate the phase angle for the point at which the intensity has to be calculated. The calculated intensity at the point is in ${\text{W}}/{{\text{m}}^2}$, but the options are given in the ${\text{mW}}/{{\text{m}}^2}$ so to find the correct option unit conversion is necessary.
Complete step by step answer
Given,
The intensity of the central fringe is ${I_c} = 0.01\;{\text{W}}/{{\text{m}}^2}$.
The path difference at a point is $\Delta x = \lambda /3$.
The equation to calculate the intensity of reference fringe is given as:
$\Rightarrow {I_c} = 4{I_0}{\cos ^2}\left( {\phi /2} \right)......\left( 1 \right)$
Here,$\phi $ is the phase angle and its value for the central fringe is $0^\circ $.
Substitute $\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2}$for ${I_c}$ and $0^\circ $for $\phi $ in the equation (1) to find the reference intensity.
$\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2} = 4{I_0}\left( {{{\cos }^2}\left( {0^\circ } \right)/2} \right)$
$\Rightarrow {I_0} = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
The equation to calculate the phase angle for the point at which the intensity is to be find is,
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda } \times \Delta x......\left( 2 \right)$
Substitute $\lambda /3$for $\Delta x$ in the equation (2) to find the phase angle at the point.
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda }\left( {\dfrac{\lambda }{3}} \right)$
$\Rightarrow \alpha = \dfrac{{2\pi }}{3}$
The equation to find the intensity at a point is given as:
$\Rightarrow I = {I_0}{\cos ^2}\left( {\dfrac{\alpha }{2}} \right)......\left( 3 \right)$
Substitute $\Rightarrow \dfrac{{2\pi }}{3}$for $\alpha $ and $2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$for ${I_0}$ in the equation (3) to find the intensity at the point.
$\Rightarrow I = 4\left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {{{\cos }^2}\left( {\dfrac{{\dfrac{{2\pi }}{3}}}{2}} \right)} \right)$
$\Rightarrow I = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
$\Rightarrow I = \left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {\dfrac{{1\;{\text{mW}}/{{\text{m}}^2}}}{{{{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}}}} \right)$
$\Rightarrow I = 2.5\;{\text{mW}}/{{\text{m}}^2}$
Thus, the find intensity at a point having path difference $\lambda /3$ on screen from center is $2.5\;{\text{mW}}/{{\text{m}}^2}$ and the option (1) is the correct answer.
Note: Calculate the phase angle for the point at which the intensity has to be calculated. The calculated intensity at the point is in ${\text{W}}/{{\text{m}}^2}$, but the options are given in the ${\text{mW}}/{{\text{m}}^2}$ so to find the correct option unit conversion is necessary.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Combination of Capacitors - In Parallel and Series for JEE

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
