Answer
Verified
114.9k+ views
Hint:
Capacitor: It is two terminal devices used to store electrical energy in an electric field. The area of the capacitor plates increases then the capacitance of the capacitor also increases and vice-versa.
The net charge on the capacitor as a whole is calculated as zero.
When a capacitor has a charge \[q\], this means that the positively charged conductor has a charge \[ + q\] and a negatively charged conductor has a charge \[ - q\].
The positively charged conductor has a higher potential than the negatively charged conductor.
Complete step by step solution:
The energy in the capacitor is stored in the form of an electrostatic field in the dielectric medium, when discharging a capacitor, the electrostatic field in the dielectric medium collapses and the energy stored in the capacitor gets released.
When a capacitor is being charged, some energy is lost by the source to move the charge from one plate to another plate.
The force required to move the charges from one plate to another gradually increases as the capacitor gets charged over time, to overcome by the energy lost by the source, after a certain point the source can no longer stand the force opposing the flow of charge through the plates and the capacitor is said to be fully charged or saturated.
Energy stored in a capacitor is in the form of electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.
Hence the correct option is \[\left( {\text{B}} \right)\].
Note:A Capacitor resists the sudden change in voltage
A non-conducting region is present between these two plates of the capacitor which is called a dielectric.
This dielectric can be a vacuum, air, mica, paper, ceramic, aluminum, or any material. The name of the capacitor is given by the dielectric used between the plates.
Capacitor: It is two terminal devices used to store electrical energy in an electric field. The area of the capacitor plates increases then the capacitance of the capacitor also increases and vice-versa.
The net charge on the capacitor as a whole is calculated as zero.
When a capacitor has a charge \[q\], this means that the positively charged conductor has a charge \[ + q\] and a negatively charged conductor has a charge \[ - q\].
The positively charged conductor has a higher potential than the negatively charged conductor.
Complete step by step solution:
The energy in the capacitor is stored in the form of an electrostatic field in the dielectric medium, when discharging a capacitor, the electrostatic field in the dielectric medium collapses and the energy stored in the capacitor gets released.
When a capacitor is being charged, some energy is lost by the source to move the charge from one plate to another plate.
The force required to move the charges from one plate to another gradually increases as the capacitor gets charged over time, to overcome by the energy lost by the source, after a certain point the source can no longer stand the force opposing the flow of charge through the plates and the capacitor is said to be fully charged or saturated.
Energy stored in a capacitor is in the form of electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.
Hence the correct option is \[\left( {\text{B}} \right)\].
Note:A Capacitor resists the sudden change in voltage
A non-conducting region is present between these two plates of the capacitor which is called a dielectric.
This dielectric can be a vacuum, air, mica, paper, ceramic, aluminum, or any material. The name of the capacitor is given by the dielectric used between the plates.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main