
If the earth contracts to half its radius, what would be the length of the day?
Answer
515.7k+ views
Hint: We know that the earth is a part of the solar system. And we also know that currently, we have 24 hours in a day. From Kepler's law of planetary motion, we know that the time period of revolution of the planets is proportional to the distance of the planet from the Sun.
Formula Used:
$F_{C}=mR\omega^{2}$
Complete step-by-step solution
We know that the earth is the 3rd planet from the sun in the solar system and it is the only planet, which can sustain life out of the 8 planets. We know that there is a gravitational force between the sun and the earth.
From newton’s law of gravitation we know that the gravitational force between the sun and the earth is given as $F=\dfrac{Gm_{1}m_{2}}{R^{2}}$ where $G$ is the gravitational constant, $m_{1}$ and $m_{2}$ are the masses of the sun and the earth respectively, which are separated at a distance $R$ from each other.
Since the planets are constantly moving on the circular path, we can say that they experience centripetal force towards the center of the sun, this force is given as $F_{C}=mR\omega^{2}$ where $\omega$ is their angular velocity.
Given that the radius of the earth is contracted to half its radius. Then for them to remain in its orbital the two forces must be equal.
$\implies mR\omega^{2}=m\dfrac{R}{2}\omega^{2}$
If the mass remains the same, we have,
$\implies R\left(\dfrac{1}{T}\right)^{2}=\dfrac{R}{2}\left(\dfrac{1}{T\prime}\right)^{2}$
$\implies \left(\dfrac{1}{T}\right)^{2}=\dfrac{1}{2}\left(\dfrac{1}{T\prime}\right)^{2}$
We know that $T=24h$
$\implies \left(\dfrac{1}{24}\right)^{2}=\dfrac{1}{2}\left(\dfrac{1}{T\prime}\right)^{2}$
$\implies \left(\dfrac{1}{24}\right)=\sqrt{\dfrac{1}{2}}\left(\dfrac{1}{T\prime}\right)$
$\implies T\prime=\dfrac{24}{\sqrt2}=19.97h$
$\therefore T\prime=19.97h$ if the earth contracts to half its radius.
Note: We also know that the earth rotates around its own axis and revolves around the sun in a specific orbit. The earth stays in its orbit due to the gravitational force between the earth and the sun. Also, we know that there are 24 hours in a day.
Formula Used:
$F_{C}=mR\omega^{2}$
Complete step-by-step solution
We know that the earth is the 3rd planet from the sun in the solar system and it is the only planet, which can sustain life out of the 8 planets. We know that there is a gravitational force between the sun and the earth.
From newton’s law of gravitation we know that the gravitational force between the sun and the earth is given as $F=\dfrac{Gm_{1}m_{2}}{R^{2}}$ where $G$ is the gravitational constant, $m_{1}$ and $m_{2}$ are the masses of the sun and the earth respectively, which are separated at a distance $R$ from each other.
Since the planets are constantly moving on the circular path, we can say that they experience centripetal force towards the center of the sun, this force is given as $F_{C}=mR\omega^{2}$ where $\omega$ is their angular velocity.
Given that the radius of the earth is contracted to half its radius. Then for them to remain in its orbital the two forces must be equal.
$\implies mR\omega^{2}=m\dfrac{R}{2}\omega^{2}$
If the mass remains the same, we have,
$\implies R\left(\dfrac{1}{T}\right)^{2}=\dfrac{R}{2}\left(\dfrac{1}{T\prime}\right)^{2}$
$\implies \left(\dfrac{1}{T}\right)^{2}=\dfrac{1}{2}\left(\dfrac{1}{T\prime}\right)^{2}$
We know that $T=24h$
$\implies \left(\dfrac{1}{24}\right)^{2}=\dfrac{1}{2}\left(\dfrac{1}{T\prime}\right)^{2}$
$\implies \left(\dfrac{1}{24}\right)=\sqrt{\dfrac{1}{2}}\left(\dfrac{1}{T\prime}\right)$
$\implies T\prime=\dfrac{24}{\sqrt2}=19.97h$
$\therefore T\prime=19.97h$ if the earth contracts to half its radius.
Note: We also know that the earth rotates around its own axis and revolves around the sun in a specific orbit. The earth stays in its orbit due to the gravitational force between the earth and the sun. Also, we know that there are 24 hours in a day.
Recently Updated Pages
NCERT Solutions For Class 5 Evs - Every Drop Counts

NCERT Solutions For Class 2 Hindi Sarangi - Duniya Rang Birangi

JEE Main 2025-26 Mock Test: Complex Numbers & Quadratic Equations

JEE Main 2025-26 Mock Test: Matrices and Determinants

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.2

NCERT Solutions For Class 11 Maths Sets Exercise 1.4

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
