Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Mathematics Chapter 11 Three Dimensional Geometry – NCERT Solutions 2025-26

ffImage
banner

Download Free PDF of Three Dimensional Geometry Exercise 11.2 for Class 12 Maths

If you are revising for your Class 12 Maths boards, NCERT Solutions for Class 12 Maths Chapter 11 Exercise 11.2 will guide you step by step through Three Dimensional Geometry. This topic is a must-know for CBSE exams, carrying a weightage of 7 marks, and is often key in board toppers’ strategies. Here, you’ll get exam-focused solutions along with process-based explanations for equations of lines, direction cosines, and calculating distances in space.

toc-symbolTable of Content
toggle-arrow

Facing “ex 11.2 class 12” level questions is easier when you build confidence in core concepts like equations of lines in space and understand the difference between direction ratios and cosines. Each answer follows board-approved solving patterns with clear solution boxes, helping you avoid common errors during high-pressure tests.


All explanations reflect the current CBSE Class 12 Maths syllabus, so you can move forward with full clarity. These solutions and practice approaches are curated by Vedantu’s trusted academic experts, ensuring reliable, updated content every time you study. If you want to double-check any topics, see the Class 12 Mathematics syllabus for details.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

NCERT Solutions for Class 12 Maths Chapter 11- Three Dimensional Geometry (Exercise 11.2)

Exercise 11.2

1. Show that the three lines with direction cosines  $\dfrac{12}{13},\dfrac{-3}{13},\dfrac{-4}{13};\dfrac{4}{13},\dfrac{12}{13},\dfrac{3}{13};\dfrac{3}{13},\dfrac{-4}{13},\dfrac{12}{13}$ are mutually perpendicular.

Ans: Two lines with direction cosines $\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)$ and $\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)$ are perpendicular to each other if

${{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0$

(i) For the lines with direction cosines

$\dfrac{12}{13},\dfrac{-3}{13},\dfrac{-4}{13}$ and $\dfrac{4}{13},\dfrac{12}{13},\dfrac{3}{13}$, we obtain

$ {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=\dfrac{12}{13}\times \dfrac{4}{13}+\dfrac{-3}{13}\times \dfrac{12}{13}+\dfrac{-4}{13}\times \dfrac{3}{13} \\ $

$ =\dfrac{48}{169}-\dfrac{36}{169}-\dfrac{12}{169} \\ $

$ =0 \\ $

Therefore, the lines are perpendicular.

(ii) For the lines with direction cosines

$\dfrac{4}{13},\dfrac{12}{13},\dfrac{3}{13}$ and $\dfrac{3}{13},\dfrac{-4}{13},\dfrac{12}{13}$, we obtain

$ {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=\dfrac{4}{13}\times \dfrac{-3}{13}+\dfrac{12}{13}\times \dfrac{-4}{13}+\dfrac{3}{13}\times \dfrac{12}{13} \\ $

$ =\dfrac{12}{169}-\dfrac{48}{169}+\dfrac{36}{169} \\ $

$ =0 \\ $

Therefore, the lines are perpendicular.

(iii) For the lines with direction cosines

$\dfrac{3}{13},\dfrac{-4}{13},\dfrac{12}{13}$ and $\dfrac{12}{13},\dfrac{-3}{13},\dfrac{-4}{13}$, we obtain

$ {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=\dfrac{3}{13}\times \dfrac{12}{13}+\dfrac{-4}{13}\times \dfrac{-3}{13}+\dfrac{12}{13}\times \dfrac{-4}{13} \\ $

$ =\dfrac{36}{169}+\dfrac{12}{169}-\dfrac{48}{169} \\ $

$ =0 \\ $

Therefore, the lines are perpendicular.


2. Show that the line through the points \[\left( \mathbf{1},-\mathbf{1},\mathbf{2} \right)\] and \[\left( \mathbf{3},\mathbf{4},-\mathbf{2} \right)\] is perpendicular to the line through the points \[\left( \mathbf{0},\mathbf{3},\mathbf{2} \right)\] and \[\left( \mathbf{3},\mathbf{5},\mathbf{6} \right)\]. 

Ans: Let AB be the line joining the points, \[\left( 1,-1,2 \right)\] and \[\left( 3,4,-2 \right)\], 

and CD be the line through the points \[\left( 0,3,2 \right)\] and \[\left( 3,5,6 \right)\]. 

The direction ratios ${{a}_{1}},{{b}_{1}},{{c}_{1}}$ of AB are 

\[\left( 3-1 \right),\left( 4\left( -1 \right) \right),\left( -2-2 \right)\] i.e.,

$2,5,-4$ 

The direction ratios ${{a}_{2}},{{b}_{2}},{{c}_{2}}$ of CD are 

\[\left( 3-0 \right),\left( 5-3 \right),\left( 6-2 \right)\] i.e.,

$3,2,4$ 

AB and CD will be perpendicular to each other if 

${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0$

$ \left( 2\times 3 \right)+\left( 5\times 2 \right)+\left( -4\times 4 \right) \\ $

$ =6+10-16 \\ $

$ =0 \\ $

Therefore, AB and CD are perpendicular to each other.


3. Show that the line through the points \[\left( \mathbf{4},\mathbf{7},\mathbf{8} \right)\], \[\left( \mathbf{2},\mathbf{3},\mathbf{4} \right)\] is parallel to the line through the points \[\left( -\mathbf{1},-\mathbf{2},\mathbf{1} \right)\], \[\left( \mathbf{1},\mathbf{2},\mathbf{5} \right)\]. 

Ans: Let AB be the line through the points \[\left( 4,7,8 \right)\]and \[\left( 2,3,4 \right)\],

CD be the line through the points, \[\left( -1,-2,1 \right)\]and \[\left( 1,2,5 \right)\]. 

The directions ratios ${{a}_{1}},{{b}_{1}},{{c}_{1}}$, of AB are 

$\left( 2-4 \right),\left( 3-7 \right),\left( 4-8 \right)$ i.e., 

$-2,-4,-4$

The direction ratios ${{a}_{2}},{{b}_{2}},{{c}_{2}}$ of CD are 

$\left( 1-\left( -1 \right) \right),\left( 2-\left( -2 \right) \right),\left( 5-1 \right)$ i.e., 

\[2,4,4\]

AB will be parallel to CD, if 

$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$

$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{-2}{2}=-1$…(1)

$\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{-4}{4}=-1$…(2)

$\dfrac{{{c}_{1}}}{{{c}_{2}}}=\dfrac{-4}{4}=-1$…(3)

From Equations (1), (2) and (3), we get

$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}=-1$

Thus, AB is parallel to CD.


4. Find the equation of the line which passes through point \[\left( \mathbf{1},\mathbf{2},\mathbf{3} \right)\] and is parallel to the vector $3\hat{i}+2\hat{j}-2\hat{k}$.

Ans: It is given that the line passes through the point A \[\left( 1,2,3 \right)\]. Therefore, the position vector through A is \[\vec{a}=\hat{i}+2\hat{j}+3\hat{k}\]

Also, \[\vec{b}=3\hat{i}+2\hat{j}-2\hat{k}\]

It is known that the line which passes through point A and parallel to $\vec{b}$ is given by $\vec{r}=\vec{a}+\lambda \vec{b}$ where is $\vec{r}$ a constant.

$\vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 3\hat{i}+2\hat{j}-2\hat{k} \right)$

This is the required equation of the line.


5. Find the equation of the line in vector and in Cartesian form that passes through the point with positive vector $2\hat{i}-\hat{j}+4\hat{k}$ and is in the direction $\hat{i}+2\hat{j}-\hat{k}$.

Ans: It is given that the line passes through the point with positive vector 

$\vec{a}=2\hat{i}-\hat{j}+4\hat{k}$

\[\vec{b}=\hat{i}+2\hat{j}-\hat{k}\]

It is known that the line which passes through point A and parallel to $\vec{b}$ is given by $\vec{r}=\vec{a}+\lambda \vec{b}$ 

$\vec{r}=2\hat{i}-\hat{j}+4\hat{k}+\lambda \left( \hat{i}+2\hat{j}-\hat{k} \right)$

This is the required equation in the vector form

$\vec{r}=\left( 2+\lambda  \right)\hat{i}+\left( 2\lambda -1 \right)\hat{j}+\left( 4-\lambda  \right)\hat{k}$

Eliminating $\lambda $, we obtain the Cartesian form of equation as

$\dfrac{x-2}{1}=\dfrac{y+1}{2}=\dfrac{z-4}{-1}$

This is the required equation of line in the cartesian form.


6. Find the Cartesian equation of the line which passes through the point \[\left( -\mathbf{2},\mathbf{4},-\mathbf{5} \right)\] and parallel to the line given by $\dfrac{x+3}{3}=\dfrac{y-4}{5}=\dfrac{z+8}{6}$.

Ans: It is given that the line passes through the point \[(-2,4,-5)\] and is parallel to $\dfrac{x+3}{3}=\dfrac{y-4}{5}=\dfrac{z+8}{6}$

The direction ratios of the line, $\dfrac{x+3}{3}=\dfrac{y-4}{5}=\dfrac{z+8}{6}$ are $3,5,6$.

The required line is parallel to $\dfrac{x+3}{3}=\dfrac{y-4}{5}=\dfrac{z+8}{6}$

Therefore, its direction ratios are \[3k,5k,6k\], when \[k\ne 0\]

It is known that the equation of the line through the point $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and with direction ratios $\left( a,b,c \right)$, is given by

$\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}$

Therefore, the equation of the required line is

$ \dfrac{x+2}{3k}=\dfrac{y-4}{5k}=\dfrac{z+5}{6k} \\ $ 

$ \Rightarrow \dfrac{x+2}{3}=\dfrac{y-4}{5}=\dfrac{z+5}{6}=k \\ $


7. The Cartesian equation of a line is \[\dfrac{x-5}{3}=\dfrac{y+4}{7}=\dfrac{z-6}{2}\]. Write its vector form.

Ans: The Cartesian equation of the line is \[\dfrac{x-5}{3}=\dfrac{y+4}{7}=\dfrac{z-6}{2}\].

The given line passes through the point \[\left( 5,-4,6 \right)\]. The positive vector of this point is $\vec{a}=5\hat{i}-4\hat{j}+6\hat{k}$

Also, the direction ratios of the given line are \[3,7,2\].

This means that the line is in the direction of the vector $\vec{b}=3\hat{i}+7\hat{j}+2\hat{k}$

It is known that the line which passes through point A and parallel to $\vec{b}$ is given by $\vec{r}=\vec{a}+\lambda \vec{b}$

$\vec{r}=\left( 5\hat{i}-4\hat{j}+6\hat{k} \right)+\lambda \left( 3\hat{i}+7\hat{j}+2\hat{k} \right)$ 

This is the required equation of the given line in vector form.


8. Find the angle between the following pairs of lines: 

(i) \[\vec{r}=\left( 2\hat{i}-5\hat{j}+1\hat{k} \right)+\lambda \left( 3\hat{i}-2\hat{j}+6\hat{k} \right)\] and \[\vec{r}=\left( 7\hat{i}-6\hat{k} \right)+\mu \left( \hat{i}+2\hat{j}+2\hat{k} \right)\] 

(ii) \[\vec{r}=\left( 3\hat{i}+\hat{j}-2\hat{k} \right)+\lambda \left( \hat{i}-\hat{j}-2\hat{k} \right)\] and \[\vec{r}=\left( 2\hat{i}-\hat{j}-56\hat{k} \right)+\mu \left( 3\hat{i}-5\hat{j}-4\hat{k} \right)\]

Ans: (i) Let Q be the angle between the given lines. 

The angle between the given pairs of lines is given by, $\cos Q=\left. \left| \dfrac{{{{\vec{b}}}_{1}}\cdot {{{\vec{b}}}_{2}}}{|{{{\vec{b}}}_{1}}|\cdot |{{{\vec{b}}}_{2}}|} \right. \right|$

The given lines are parallel to the vectors, ${{\vec{b}}_{1}}=3\hat{i}-2\hat{j}+6\hat{k}$ and ${{\vec{b}}_{2}}=\hat{i}+2\hat{j}+2\hat{k}$, respectively.

$ |{{b}_{1}}|=\sqrt{{{3}^{2}}+{{2}^{2}}+{{6}^{2}}}=7 \\$ 

$ |{{b}_{2}}|=\sqrt{{{1}^{2}}+{{2}^{2}}+{{2}^{2}}}=3 \\ $

$ {{b}_{1}}\cdot {{b}_{2}}=\left( 3\hat{i}-2\hat{j}+6\hat{k} \right)\cdot \left( \hat{i}+2\hat{j}+2\hat{k} \right) \\ $

$ =3\times 1+2\times 2+6\times 2 \\ $

$ =3+4+12 \\ $

$ =19 \\ $

$\cos Q=\dfrac{19}{7\times 3} \\ $

$ \Rightarrow Q={{\cos }^{-1}}\left( \dfrac{19}{21} \right) \\$


(ii) Let Q be the angle between the given lines. 

The angle between the given pairs of lines is given by, $\cos Q=\left. \left| \dfrac{{{{\vec{b}}}_{1}}\cdot {{{\vec{b}}}_{2}}}{|{{{\vec{b}}}_{1}}|\cdot |{{{\vec{b}}}_{2}}|} \right. \right|$

The given lines are parallel to the vectors, ${{\vec{b}}_{1}}=\hat{i}-\hat{j}-2\hat{k}$ and ${{\vec{b}}_{2}}=3\hat{i}-5\hat{j}-4\hat{k}$, respectively.

$ |{{b}_{1}}|=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( -2 \right)}^{2}}}=\sqrt{6} \\ $

$ |{{b}_{2}}|=\sqrt{{{3}^{2}}+{{\left( -5 \right)}^{2}}+{{\left( -4 \right)}^{2}}}=\sqrt{50}=5\sqrt{2} \\ $

 $ {{b}_{1}}\cdot {{b}_{2}}=\left( \hat{i}-\hat{j}-2\hat{k} \right)\cdot \left( 3\hat{i}-5\hat{j}-4\hat{k} \right) \\ $

 $ =1\times 3+\left( -1 \right)\times \left( -5 \right)+\left( -2 \right)\times \left( -4 \right) \\ $

 $ =3+5+8 \\ $

 $ =16 \\ $

$ \cos Q=\dfrac{16}{\sqrt{6}\times 5\sqrt{2}} \\ $

$ \Rightarrow Q={{\cos }^{-1}}\left( \dfrac{8}{5\sqrt{3}} \right) \\ $


9. Find the angle between following pairs of lines.

(i) $\dfrac{x-2}{2}=\dfrac{y-1}{5}=\dfrac{z+3}{-3}$ and $\dfrac{x+2}{-1}=\dfrac{y-4}{8}=\dfrac{z-5}{4}$

(ii) $\dfrac{x}{2}=\dfrac{y}{2}=\dfrac{z}{1}$ and $\dfrac{x-5}{-4}=\dfrac{y-2}{1}=\dfrac{z-3}{8}$

Ans: (i) Let Q be the angle between the given lines. 

The angle between the given pairs of lines is given by, $\cos Q=\left. \left| \dfrac{{{{\vec{b}}}_{1}}\cdot {{{\vec{b}}}_{2}}}{|{{{\vec{b}}}_{1}}|\cdot |{{{\vec{b}}}_{2}}|} \right. \right|$

The given lines are parallel to the vectors, ${{\vec{b}}_{1}}=2\hat{i}+5\hat{j}-3\hat{k}$ and ${{\vec{b}}_{2}}=-\hat{i}+8\hat{j}+4\hat{k}$, respectively.

$ |{{b}_{1}}|=\sqrt{{{2}^{2}}+{{5}^{2}}+{{\left( -3 \right)}^{2}}}=\sqrt{38} \\ $

$ |{{b}_{2}}|=\sqrt{{{\left( -1 \right)}^{2}}+{{8}^{2}}+{{4}^{2}}}=9 \\ $

$ {{b}_{1}}\cdot {{b}_{2}}=\left( 2\hat{i}+5\hat{j}-3\hat{k} \right)\cdot \left( -\hat{i}+8\hat{j}+4\hat{k} \right) \\ $

$ =2\times \left( -1 \right)+5\times 8+\left( -3 \right)\times 4 \\ $

$ =-2+40-12 \\ $

$ =26 \\ $

$ \cos Q=\dfrac{26}{9\sqrt{38}} \\ $

$ \Rightarrow Q={{\cos }^{-1}}\left( \dfrac{26}{9\sqrt{38}} \right) \\ $


(i) Let Q be the angle between the given lines. 

The angle between the given pairs of lines is given by, $\cos Q=\left. \left| \dfrac{{{{\vec{b}}}_{1}}\cdot {{{\vec{b}}}_{2}}}{|{{{\vec{b}}}_{1}}|\cdot |{{{\vec{b}}}_{2}}|} \right. \right|$

The given lines are parallel to the vectors, ${{\vec{b}}_{1}}=2\hat{i}+2\hat{j}+\hat{k}$ and ${{\vec{b}}_{2}}=8\hat{i}+\hat{j}+8\hat{k}$, respectively.

$ |{{b}_{1}}|=\sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}}=3 \\ $

$ |{{b}_{2}}|=\sqrt{{{4}^{2}}+{{1}^{2}}+{{8}^{2}}}=9 \\  $

$ {{b}_{1}}\cdot {{b}_{2}}=\left( 2\hat{i}+2\hat{j}+\hat{k} \right)\cdot \left( 4\hat{i}+\hat{j}+8\hat{k} \right) \\ $

$ =2\times 4+2\times 1+1\times 8 \\ $

$ =8+2+8 \\ $

$ =18 \\ $

$ \cos Q=\dfrac{18}{3\times 9} \\ $

$ \Rightarrow Q={{\cos }^{-1}}\left( \dfrac{2}{3} \right) \\ $


10. Find the values of p so that the lines \[\dfrac{1-x}{3}=\dfrac{7y-14}{2p}=\dfrac{z-3}{2}\] and \[\dfrac{7-7x}{3p}=\dfrac{y-5}{1}=\dfrac{6-z}{5}\] are at right angles.

Ans: The given equations can be written in the standard form as

\[\dfrac{x-1}{-3}=\dfrac{y-2}{\dfrac{2p}{7}}=\dfrac{z-3}{2}\] and

\[\dfrac{x-1}{-\dfrac{3p}{7}}=\dfrac{y-5}{1}=\dfrac{z-6}{-5}\]

The direction ratios of the lines are

$-3,\dfrac{2p}{7},2$ and

$-\dfrac{3p}{7},1,-5$

Two lines will be perpendicular to each other if 

${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0$

$ \left( -3\times \dfrac{-3p}{7} \right)+\left( \dfrac{2p}{7}\times 1 \right)+\left( 2\times \left( -5 \right) \right)=0 \\ $

$ \Rightarrow \dfrac{9p}{7}+\dfrac{2p}{7}-10=0 \\ $

$ \Rightarrow 9p+2p-70=0 \\ $

$ \Rightarrow 11p-70=0 \\ $

$ \Rightarrow 11p=70 \\ $

$ \Rightarrow p=\dfrac{70}{11} \\ $

Thus, the value of  $p=\dfrac{70}{11}$.


11. Show that the lines $\dfrac{x-5}{7}=\dfrac{y+2}{-5}=\dfrac{z}{1}$ and $\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ are perpendicular to each other.

Ans: We are given the equations of lines as 

$\dfrac{x-5}{7}=\dfrac{y+2}{-5}=\dfrac{z}{1}$ and$\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$

The direction ratios of the given lines are 

$7,-5,1$ and $1,2,3$

Two lines will be perpendicular to each other if 

${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0$

$ 7\times 1+\left( -5 \right)\times 2+1\times 3 \\ $

$ =7-10+3 \\ $

$ =0 \\ $

Therefore, the given lines are perpendicular to each other.


12. Find the shortest distance between the lines $\vec{r}=\left( \hat{i}+2\hat{j}+\hat{k} \right)+\lambda \left( \hat{i}-\hat{j}+\hat{k} \right)$ and $\vec{r}=\left( 2\hat{i}-\hat{j}-\hat{k} \right)+\mu \left( 2\hat{i}+\hat{j}+2\hat{k} \right)$ .

Ans: The equations of given lines are

$\vec{r}=\left( \hat{i}+2\hat{j}+\hat{k} \right)+\lambda \left( \hat{i}-\hat{j}+\hat{k} \right)$ and $\vec{r}=\left( 2\hat{i}-\hat{j}-\hat{k} \right)+\mu \left( 2\hat{i}+\hat{j}+2\hat{k} \right)$.

It is known that the shortest distance between the lines $\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and $\vec{r}={{\vec{a}}_{1}}+\mu {{\vec{b}}_{2}}$ is given by

\[d=\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)\cdot \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|\]…(1)

On comparing the equations, we obtain,

$ {{{\vec{a}}}_{1}}=\left( \hat{i}+2\hat{j}+\hat{k} \right) \\ $

$ {{{\vec{b}}}_{1}}=\left( \hat{i}-\hat{j}+\hat{k} \right) \\ $

$ {{{\vec{a}}}_{2}}=\left( 2\hat{i}-\hat{j}-\hat{k} \right) \\ $

$ {{{\vec{b}}}_{2}}=\left( 2\hat{i}+\hat{j}+2\hat{k} \right) \\ $

$ {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}}=\left( 2\hat{i}-\hat{j}-\hat{k} \right)-\left( \hat{i}+2\hat{j}+\hat{k} \right) \\ $

$ \left( \hat{i}-3\hat{j}-2\hat{k} \right) \\ $

$\begin{align} & {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}}  \\ 1 & -1 & 1  \\ 2 & 1 & 2  \\ \end{matrix} \right| \\ & =\left( -2-1 \right)\hat{i}-\left( 2-2 \right)\hat{j}+\left( 1+2 \right)\hat{k} \\ & =-3\hat{i}+3\hat{k} \\ \end{align}$

$ \Rightarrow \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -3 \right)}^{2}}+{{3}^{2}}} \\ $

$ =\sqrt{9+9}=\sqrt{18} \\ $

$ =3\sqrt{2} \\ $

Substituting all values obtained in equation (1),

$ d=\left| \dfrac{\left( -3\hat{i}+3\hat{k} \right)\cdot \left( \hat{i}-3\hat{j}-2\hat{k} \right)}{3\sqrt{2}} \right| \\$ 

$ =\left| \dfrac{\left( -3 \right)1+3\left( -2 \right)}{3\sqrt{2}} \right| \\ $

$ =\left| \dfrac{-9}{3\sqrt{2}} \right| \\ $

$ =\dfrac{3}{\sqrt{2}} \\ $

Therefore, the shortest distance between the lines given is $\dfrac{3}{\sqrt{2}}$ units.


13. Find the shortest distance between the lines $\dfrac{x+1}{7}=\dfrac{y+1}{-6}=\dfrac{z+1}{1}$ and $\dfrac{x-3}{1}=\dfrac{y-5}{-2}=\dfrac{z-7}{1}$.

Ans: The given lines are $\dfrac{x+1}{7}=\dfrac{y+1}{-6}=\dfrac{z+1}{1}$ and $\dfrac{x-3}{1}=\dfrac{y-5}{-2}=\dfrac{z-7}{1}$.

It is known that the shortest distance between the lines

$\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}$ and $\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}$ is given by

\[d=\left| \dfrac{\left| \begin{matrix} {{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}}  \\ {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ \end{matrix} \right|}{\sqrt{{{\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)}^{2}}+{{\left( {{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}} \right)}^{2}}+{{\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)}^{2}}}} \right|\].…(1)

Comparing the equations, we obtain,

${{x}_{1}}=-1,{{y}_{1}}=-1,{{z}_{1}}=-1 \\ $

$ {{a}_{1}}=7,{{b}_{1}}=-6,{{c}_{1}}=1 \\ $

$ {{x}_{2}}=3,{{y}_{2}}=5,{{z}_{2}}=7 \\ $

$ {{a}_{2}}=1,{{b}_{2}}=-2,{{c}_{2}}=1 \\ $

Then, \[\left| \begin{matrix} {{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}}  \\ {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ \end{matrix} \right|=\left| \begin{matrix} 4 & 6 & 8  \\ 7 & -6 & 1  \\ 1 & -2 & 1  \\ \end{matrix} \right|\]

$=4\left( -16+2 \right)-6\left( 7-1 \right)+8\left( -14+6 \right) \\ $

$ =-16-36-64 \\ $

$ =-116 \\ $

Also,

$ \sqrt{{{\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)}^{2}}+{{\left( {{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}} \right)}^{2}}+{{\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)}^{2}}} \\ $

$ =\sqrt{{{\left( -6+2 \right)}^{2}}+{{\left( 1+7 \right)}^{2}}+{{\left( -14+6 \right)}^{2}}} \\ $

$ =\sqrt{116} \\ $

$ =2\sqrt{29} \\ $

Substituting all the values in equation (1),

$ d=\left| \dfrac{-116}{2\sqrt{29}} \right| \\ $

$ =\left| \dfrac{-58}{\sqrt{29}} \right| \\ $

$ =\left| -2\sqrt{29} \right| \\ $

$ =2\sqrt{29} \\ $

Since the distance is always non-negative, the distance between the given lines is $-2\sqrt{29}$ units.


14. Find the shortest distance between the lines whose vector equations are $\vec{r}=\left( \hat{i}+2\hat{j}+3\hat{k} \right)+\lambda \left( \hat{i}-3\hat{j}+2\hat{k} \right)$ and $\vec{r}=\left( 4\hat{i}+5\hat{j}+6\hat{k} \right)+\mu \left( 2\hat{i}+3\hat{j}+\hat{k} \right)$ .

Ans: The equations of given lines are

$\vec{r}=\left( \hat{i}+2\hat{j}+3\hat{k} \right)+\lambda \left( \hat{i}-3\hat{j}+2\hat{k} \right)$ and $\vec{r}=\left( 4\hat{i}+5\hat{j}+6\hat{k} \right)+\mu \left( 2\hat{i}+3\hat{j}+\hat{k} \right)$.

It is known that the shortest distance between the lines $\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and $\vec{r}={{\vec{a}}_{1}}+\mu {{\vec{b}}_{2}}$ is given by

\[d=\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)\cdot \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|\]…(1)

On comparing the equations, we obtain,

$ {{{\vec{a}}}_{1}}=\left( \hat{i}+2\hat{j}+3\hat{k} \right) \\ $

$ {{{\vec{b}}}_{1}}=\left( \hat{i}-3\hat{j}+2\hat{k} \right) \\ $

$ {{{\vec{a}}}_{2}}=\left( 4\hat{i}+5\hat{j}+6\hat{k} \right) \\ $

$ {{{\vec{b}}}_{2}}=\left( 2\hat{i}+3\hat{j}+\hat{k} \right) \\ $

$ {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}}=\left( 4\hat{i}+5\hat{j}+6\hat{k} \right)-\left( \hat{i}+2\hat{j}+3\hat{k} \right) \\ $

$ =\left( 3\hat{i}+3\hat{j}+3\hat{k} \right) \\ $

$\begin{align} & {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}}  \\ 1 & -3 & 2  \\ 2 & 3 & 1  \\ \end{matrix} \right| \\  & =\left( -3-6 \right)\hat{i}-\left( 1-4 \right)\hat{j}+\left( 3+6 \right)\hat{k} \\ & =-9\hat{i}+3\hat{j}+9\hat{k} \\ \end{align}$

$ \Rightarrow \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -9 \right)}^{2}}+{{3}^{2}}+{{9}^{2}}} \\ $

$ =\sqrt{81+9+81}=\sqrt{171} \\ $

$ =3\sqrt{19} \\ $

Substituting all values obtained in equation (1),

$ d=\left| \dfrac{\left( -9\hat{i}+3\hat{j}+9\hat{k} \right)\cdot \left( 3\hat{i}+3\hat{j}+3\hat{k} \right)}{3\sqrt{19}} \right| \\ $

$ =\left| \dfrac{\left( -9 \right)3+3\times 3+9\times 3}{3\sqrt{19}} \right| \\ $

$ =\left| \dfrac{9}{3\sqrt{19}} \right| \\ $

$ =\dfrac{3}{\sqrt{19}} \\ $

Therefore, the shortest distance between the lines given is \[\dfrac{3}{\sqrt{19}}\] units.


15. Find the shortest distance between the lines whose vector equations are

$ \vec{r}=(1-t)\hat{i} +(t-2)\hat{j}+(3-2t)\hat{k}$

$ \vec{r}=(s+1)\hat{i} +(2s-1)\hat{j}-(2s+1)\hat{k}$

Ans: Firstly, let’s consider the given equations

$\Rightarrow   \vec{r}=(1-t)\hat{i} +(t-2)\hat{j}+(3-2t)\hat{k}$

$\vec{r}=\hat{i}-t\hat{i}+t\hat{j}-2\hat{j}+3\hat{k}-2t\hat{k}$

$\vec{r} = \hat{i}-2\hat{j}+3\hat{k}+t(-\hat{i}+\hat{j}-2\hat{k})$

$\Rightarrow \vec{r}=(s+1)\hat{i}+(2s-1)\hat{j}-(2s+1)\hat{k}$

$\vec{r}=(s+1)\hat{i} +(2s-1)\hat{j}-(2s+1)\hat{k}$

$\vec{r}=s\hat{i}+\hat{i}+2s\hat{j}-\hat{j}-2s\hat{k}-\hat{i}$

$\vec{r}=\hat{i}-\hat{j}-\hat{k}+s(\hat{i}+2\hat{j}-2\hat{k})$

So, now we need to find the shortest distance between

$\vec{r}=\hat{i}-2\hat{j}+3\hat{k}+t(-\hat{i}+\hat{j}-2\hat{k})$ and $\vec{r}=\hat{i}-\hat{j}-\hat{k}+s(\hat{i}+2\hat{j}-2\hat{k})$

We know that shortest distance between two lines $\vec{r}=\vec{a_{1}}+\lambda \vec{b_{1}}$ and $\vec{r}=\vec{a_{2}}+ \mu  \vec{b_{2}} $

$d=\left | \dfrac{(\vec{b_1}\times \vec{b_2})\cdot (\vec{a_2}\times \vec{a_1}) }{\left | \vec{b_1} \times \vec{b_2} \right |} \right |......(1)$

By comparing the equations we get,

$\vec{a_{1}}=\hat{i}-2\hat{j}+3\hat{k}$ ,  $\vec{b_{1}} =-\hat{i}+\hat{j}-2\hat{k}$

$\vec{a_{2}} =\hat{i}-\hat{j}-\hat{k}$,  $\vec{b_{2}} =\hat{i}+2\hat{j}-2\hat{k}$

Since,

$(X_{1}\hat{i}+Y_{1}\hat{j}+Z_{1}\hat{k})-(X_{2}\hat{i}+Y_{2}\hat{j}+Z_{2}\hat{k})$

$\Rightarrow (X_{1}-X_{2})\hat{i}+(Y_{1}-Y_{2})\hat{j}+(Z_{1}-Z_{2})\hat{k}$

So, $\vec{a_{2}}-\vec{a_{1}}=(\hat{i}-\hat{j}-\hat{k})-(\hat{i}-2\hat{j}+3\hat{k})=\hat{j}-4\hat{k}$ …..(2)

And,

$\vec{b_{1}}\times\vec{b_{2}}=(-\hat{i}+\hat{j}-2\hat{k})\times(\hat{i}+2\hat{j}-2\hat{k})$

$\begin{vmatrix} \hat{i} & \hat{j}& \hat{k} \\ -1 & 1& -2\\ 1& 2& -2\\ \end{vmatrix}$

$\vec{b_{1}}\times\vec{b_{2}}=2\hat{i}-4\hat{j}-3\hat{k}$ …..(3)

$\Rightarrow \left | \vec{b_{1}}\times\vec{b_{2}} \right |=\sqrt{2^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{4+16+9}=29$

Now multiplying (2) and (3) we get,

$\left ( a_{1}\hat{i} + b_{1}\hat{j} + c_{1}\hat{k} \right )\cdot \left ( a_{2}\hat{i} + b_{2}\hat{j} + c_{2}\hat{k} \right ) = a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}$

$(\vec{b_{1}}\times\vec{b_{2}})\cdot (\vec{a_{1}}\times\vec{a_{2}})=(2\hat{i}-4\hat{j}-3\hat{k})\cdot (\hat{j}-4\hat{k})$

=-4+18=8 ….(5)

By substituting all the values in (1), we obtain

The shortest distance between the two lines,

$d=\left | \dfrac{8}{\sqrt{29}} \right |=\dfrac{8}{\sqrt{29}}$

$\therefore$ The shortest distance is $\dfrac{8}{\sqrt{29}}$


Conclusion

Class 12 Maths Chapter 11 Exercise 11.2 focuses on the equation of a line in space, angles between lines, and the shortest distance between lines. Understanding these concepts is crucial for mastering three-dimensional geometry. Vedantu’s NCERT Solutions offer clear, step-by-step explanations, making complex topics easier to grasp. By practicing these solutions, students can enhance their problem-solving skills and prepare effectively for exams. Rely on Vedantu for comprehensive and accurate solutions to excel in your studies.


Class 12 Maths Chapter 11: Exercises Breakdown

S.No.

Chapter 11 - Three Dimensional Geometry Exercises in PDF Format

1

Class 12 Maths Chapter 11 Exercise 11.1 - 5 Questions & Solutions (5 Short Answers)



CBSE Class 12 Maths Chapter 11 Other Study Materials




NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Mathematics Chapter 11 Three Dimensional Geometry – NCERT Solutions 2025-26

1. What is the correct step-by-step method for solving line-related problems in NCERT Solutions for Class 12 Maths Chapter 11?

Begin by identifying whether the question deals with the equation of a line, angles between lines, or distances. Use the following approach:

  • Write down the given points, vectors, or equations as per question data.
  • If direction ratios or cosines are involved, find or verify them.
  • Apply the relevant NCERT formula: for perpendicularity, set scalar product to zero; for parallelism, check proportionality; for the shortest distance, use the cross product method.
  • Show every calculation in clear, logical steps as expected in CBSE board marking.
  • Box or highlight the final answer, checking for correct units or directions.

2. How can you distinguish between direction cosines and direction ratios while solving 3D geometry questions in NCERT Solutions?

Direction cosines are the cosines of the angles that a line makes with the X, Y, and Z axes and always satisfy l² + m² + n² = 1. Direction ratios are any three proportional numbers indicating a line’s direction without magnitude restrictions. In Class 12 3D geometry:

  • Use direction cosines for writing equations and finding angles.
  • Use direction ratios for vector operations and comparing line directions.

3. What is the process for finding the equation of a line passing through a given point and parallel to a given vector in Exercise 11.2?

To find the line’s equation:

  • Let the point be P(x₁, y₁, z₁) and the parallel vector be ai + bj + ck.
  • Write the vector form: r = a + λb (where a is the position vector of P and b is the direction vector).
  • Convert to Cartesian form: (x − x₁)/a = (y − y₁)/b = (z − z₁)/c.
Always clearly state the form needed, as per CBSE exam patterns.

4. Which types of line and plane equation problems are most commonly seen in CBSE board exams from Chapter 11?

CBSE Class 12 board exams often include:

  • Showing lines are perpendicular or parallel using direction ratios
  • Finding equations of lines in both vector and Cartesian forms
  • Calculating the shortest distance between skew lines
  • Determining the angle between two given lines
  • Distance between a point and a plane
All require detailed, stepwise solutions as per NCERT methodology.

5. Why is understanding the difference between the vector and Cartesian forms of a line crucial when using NCERT Solutions for Three Dimensional Geometry?

Vector form gives a clear geometric interpretation using position and direction vectors, which is helpful for vector-based questions and proofs. Cartesian form is preferred for direct substitution and solving for coordinates. Board exams may require switching between these forms, so understanding both is necessary for full marks in Class 12 Maths Chapter 11.

6. What key formula is used for calculating the shortest distance between two skew lines in NCERT Class 12 Maths Chapter 11?

The standard formula is d = |(b₁ × b₂) · (a₂ − a₁)| / |b₁ × b₂|, where a₁ and a₂ are position vectors of the lines and b₁, b₂ are their direction vectors. Calculate the cross product to get a vector perpendicular to both lines, then use the dot product with the difference of position vectors to find the required scalar distance.

7. How do you verify if two lines are perpendicular or parallel using direction ratios in CBSE solutions for Chapter 11?

For perpendicular lines: The sum a₁a₂ + b₁b₂ + c₁c₂ must equal zero.
For parallel lines: The ratios a₁/a₂, b₁/b₂, and c₁/c₂ must be equal. This method is standard in NCERT Solutions for Class 12 Maths and is frequently tested in board exams.

8. What common mistakes should students avoid when attempting NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry?

Avoid the following mistakes:

  • Not checking if direction ratios or cosines satisfy required conditions
  • Missing steps in changing between vector and Cartesian forms
  • Incorrectly computing cross or dot products
  • Forgetting to substitute all required values in formulas
Write all steps as shown in NCERT-approved methods to maximize exam marks.

9. How does solving NCERT Solutions for Class 12 Maths Chapter 11 build skills needed for JEE and engineering entrance exams?

Practicing these solutions strengthens students’ understanding of spatial reasoning, vectors, and geometric principles. The chapter covers line and plane equations, angle calculations, and vector math—all foundational for tougher JEE questions. Mastering stepwise solutions also improves speed and accuracy in competitive exams.

10. What is the role of direction cosines in writing equations of lines and planes, as per CBSE 2025–26 syllabus for Chapter 11?

Direction cosines (l, m, n) uniquely define the orientation of a line or normal to a plane with respect to coordinate axes. They are essential for:

  • Expressing general equations of lines/planes in vector and Cartesian form
  • Calculating angles between lines or planes
  • Ensuring direction satisfies the geometric conditions (l² + m² + n² = 1)
This concept is fundamental and repeatedly applied throughout Exercise 11.2 solutions.