
Derive relation between $g$ and $G$
Answer
173.4k+ views
Hint: Newton's law of gravitation states that the force between two unknown masses is directly proportional to the force acting between them. The force is inversely proportional to the square of distance between the masses. Also these masses experience acceleration due to gravity as well.
Complete step by step solution:
The acceleration of a body in free fall due to the massive body's gravity is g. The attraction force between two objects with a unit mass divided in some portion of this universe by a unit distance is G.
The gravity of any large body is g. The inertia on an object. A universal gravitational constant denoting G is the attraction force between any two masses divided by unit size. There is no proportional relationship between G and g. That implies that they are distinct bodies.
Let’s consider two bodies of masses $M$ and $m$ kept at distance $r$ from each other, now, according to Newton’s law of gravitation, we know that,
$F = \dfrac{{GMm}}{{{r^2}}}$
$F$ is the force between the two bodies
$G$ is the gravitational constant
$M$ is mass for first body
$m$ is mass of second body
$r$ is distance between two bodies
Let us consider that the first body is earth with mass $M$, $r$ radius. Now the force acting along the body will be
$F = mg$
$g$ is acceleration due to gravity
From the above two equations, we can write that,
$\dfrac {{GMm}} {{{r^2}}} = mg$
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$
Hence we have a relation between $g$ and $G$.
Note: Although the relationship between g and G in physics can be expressed in a shape. Because of the gravity and the universal gravity, there is no relation between the acceleration and the G value. For some point in this world, the value of G is constant. G and g are not mutually based.
Complete step by step solution:
The acceleration of a body in free fall due to the massive body's gravity is g. The attraction force between two objects with a unit mass divided in some portion of this universe by a unit distance is G.
The gravity of any large body is g. The inertia on an object. A universal gravitational constant denoting G is the attraction force between any two masses divided by unit size. There is no proportional relationship between G and g. That implies that they are distinct bodies.
Let’s consider two bodies of masses $M$ and $m$ kept at distance $r$ from each other, now, according to Newton’s law of gravitation, we know that,
$F = \dfrac{{GMm}}{{{r^2}}}$
$F$ is the force between the two bodies
$G$ is the gravitational constant
$M$ is mass for first body
$m$ is mass of second body
$r$ is distance between two bodies
Let us consider that the first body is earth with mass $M$, $r$ radius. Now the force acting along the body will be
$F = mg$
$g$ is acceleration due to gravity
From the above two equations, we can write that,
$\dfrac {{GMm}} {{{r^2}}} = mg$
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$
Hence we have a relation between $g$ and $G$.
Note: Although the relationship between g and G in physics can be expressed in a shape. Because of the gravity and the universal gravity, there is no relation between the acceleration and the G value. For some point in this world, the value of G is constant. G and g are not mutually based.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

JEE Main Mock Test 2025-26: Purification & Characterisation of Organic Compounds

JEE Main 2025 Coordination Compounds Mock Test – Free Practice Online

JEE Main 2025-26 Equilibrium Mock Test: Free Practice Online

JEE Main Mock Test 2025-26: D and F Block Elements Practice

JEE Main Mock Test 2025-26: Chapter-Wise Practice Papers

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
