Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

ffImage
banner

NCERT Solutions for Maths Class 12 Exercise 7.2 Chapter 7 Integrals - FREE PDF Download

This section dives deeper into a powerful technique called Integration by Parts. You'll learn the formula for integrating products of functions and gain practice solving these integrals through illustrative problems. Integration by Parts is a fundamental concept in Calculus, so get ready to sharpen your skills! Class 12 Maths Ex 7.2 contains all questions and answers for the current NCERT Syllabus.

toc-symbolTable of Content
toggle-arrow


Glance on NCERT Solutions Maths Chapter 7 Exercise 7.2 Class 12 | Vedantu

  • This exercise likely focuses on practicing integration techniques you learned in Chapter 7. 

  • Integration is the process of finding the function whose derivative is a given function. 

  • Integration by substitution technique involves substituting a new variable for a part of the function that makes integration easier.

  • Integration by parts is used to integrate the product of two functions. It involves integrating the product of one function times the derivative of the other function, minus the integral of the first function times the derivative of the second function.

  • The exercise also include applications of integration, such as finding areas and volumes under curves, finding the work done by a force over a distance, or finding moments and centers of mass.


Some Properties of Indefinite Integral

(i) ∫[f(x) + g(x)] dx = ∫f(x) dx + ∫g(x) dx

(ii) For any real number k, ∫k f(x) dx = k∫f(x)dx.

(iii) In general, if f1, f2,………, fn are functions and k1, k2,…, kn are real numbers, then

∫[k1f1(x) + k2 f2(x)+…+ knfn(x)] dx = k1 ∫f1(x) dx + k2 ∫ f2(x) dx+…+ kn ∫fn(x) dx


Some Basic Integral Formulas

  • ∫ 1 dx = x + C

  • ∫ a dx = ax + C

  • ∫ xn dx = ((xn+1)/(n+1))+C ; n≠1

  • ∫ sin x dx = – cos x + C

  • ∫ cos x dx = sin x + C

  • ∫ sec2x dx = tan x + C

  • ∫ csc2x dx = -cot x + C

  • ∫ sec x (tan x) dx = sec x + C

  • ∫ csc x ( cot x) dx = – csc x + C

  • ∫ (1/x) dx = ln |x| + C

  • ∫ ex dx = ex+ C

  • ∫ ax dx = (ax/ln a) + C ; a>0,  a≠1

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

NCERT Solutions for Class 12 Maths Chapter 7 – Exercise 7.2 Questions

Exercise 7.2

1. Integrate  $ \dfrac{2x}{1+{{x}^{2}}} $ 

Ans:

Let  $ 1+{{x}^{2}}=\text{t} $ 

$ \therefore 2\text{xdx}=\text{dt} $ 

$ \Rightarrow \int{\dfrac{2x}{1+{{x}^{2}}}}dx=\int{\dfrac{1}{t}}dt $ 

$ =\log |t|+C $ 

$ =\log \left| 1+{{x}^{2}} \right|+C $ 

$ =\log \left( 1+{{x}^{2}} \right)+C $ 

where C is an arbitrary constant. 


2. Integrate  $ \dfrac{{{\left( \log x \right)}^{2}}}{x} $ 

Ans:

Let  $ \log x=t $ 

$ \therefore \dfrac{1}{x}dx=dt $ 

$ \Rightarrow \int{\dfrac{{{(\log |x|)}^{2}}}{x}}dx=\int{{{t}^{2}}}dt $ 

$ =\dfrac{{{t}^{3}}}{3}+C $ 

$ =\dfrac{{{(\log |x|)}^{3}}}{3}+C $ 

where C is an arbitrary constant. 


3. Integrate  $ \dfrac{1}{x+x\log x} $ 

Ans:

The given function can be written as 

$ \dfrac{1}{x+x\log x}=\dfrac{1}{x\left( 1+\log x \right)} $ 

Let  $ 1+\log x=t $ 

$ \therefore \dfrac{1}{x}dx=dt $ 

$ \Rightarrow \int{\dfrac{1}{x(1+\log x)}}dx=\int_{t}^{1}{d}t $ 

$ =\log |t|+C $ 

$ =\log |1+\log x|+C $ 

where C is an arbitrary constant.


4. Integrate  $ \sin x.\sin \left( \cos x \right) $ 

Ans:

Let  $ \cos x=t $ 

$ \therefore -\sin xdx=t $ 

$ \Rightarrow \int{\sin }x\cdot \sin (\cos x)dx=-\int{\sin }tdt $ 

$ =-[-\cos t]+C $ 

$ =\cos t+C $ 

$ =\cos (\cos x)+C $ 

where C is an arbitrary constant.


5. Integrate  $ \sin \left( ax+b \right)\cos \left( ax+b \right) $ 

Ans:

The given function can be rewritten as

 $ \sin (ax+b)\cos (ax+b)=\dfrac{2\sin (ax+b)\cos (ax+b)}{2}=\dfrac{\sin 2(ax+b)}{2} $ 

let  $ 2(ax+b)=t $ 

 $ \therefore 2adx=dt $ 

 $ \Rightarrow \int{\dfrac{\sin 2(ax+b)}{2}}dx=\dfrac{1}{2}\int{\dfrac{\sin tdt}{2a}} $ 

 $ =\dfrac{1}{4a}[-\cos t]+C $ 

 $ =\dfrac{-1}{4a}\cos 2(ax+b)+C $ 

where C is an arbitrary constant.


6. Integrate $ \sqrt{ax+b} $ 

Ans:

Let  $ ax+b=t $ 

\[\Rightarrow adx=dt\]

\[\therefore dx=\dfrac{1}{a}dt\]

\[\Rightarrow \int{{{(ax+b)}^{\dfrac{1}{2}}}}dx=\dfrac{1}{a}\int{{{t}^{\dfrac{1}{2}}}}dt\]

\[=\dfrac{1}{a}\left( \dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{3}{2}} \right)+C\]

\[=\dfrac{2}{3a}{{(ax+b)}^{\dfrac{3}{2}}}+C\]

where C is an arbitrary constant.


7. Integrate  $ x\sqrt{x+2} $ 

Ans:

Let  $ x+2=t $ 

 $ \therefore dx=dt $ 

 $ \Rightarrow \int{x}\sqrt{x+2}dx=\int{(t-2)}\sqrt{t}dt $ 

 $ =\int{\left( {{t}^{\dfrac{3}{2}}}-2{{t}^{\dfrac{1}{2}}} \right)}dt\ $ \ $ =\int{{{t}^{\dfrac{3}{2}}}}dt-2\int{{{t}^{\dfrac{1}{2}}}}dt $ 

 $ =\dfrac{{{t}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}-2\left( \dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right)+C $ 

 $ =\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}-\dfrac{4}{3}{{t}^{\dfrac{3}{2}}}+C $ 

 $ =\dfrac{2}{5}{{(x+2)}^{\dfrac{5}{2}}}-\dfrac{4}{3}{{(x+2)}^{\dfrac{3}{2}}}+C $ 

where C is an arbitrary constant.


8. Integrate  $ x\sqrt{1+2{{x}^{2}}} $ 

Ans:

Let  $ 1+2{{x}^{2}}=t $ 

\[\therefore 4\text{xdx}=\text{dt}\]

\[\Rightarrow \int{x}\sqrt{1+2{{x}^{2}}}dx=\int{\dfrac{\sqrt{t}}{4}}dt\]

\[=\dfrac{1}{4}\int{{{t}^{\dfrac{1}{2}}}}dt\]

\[=\dfrac{1}{4}\left( \dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right)+C\]

\[=\dfrac{1}{6}{{\left( 1+2{{x}^{2}} \right)}^{\dfrac{3}{2}}}+C\]

where C is an arbitrary constant.


9. Integrate  $ \left( 4x+2 \right)\sqrt{{{x}^{2}}+x+1} $ 

Ans:

Let  $ {{\text{x}}^{2}}+\text{x}+1=\text{t} $ 

 $ \therefore (2\text{x}+1)\text{dx}=\text{dt} $ 

 $ \int{(4x+2)}\sqrt{{{x}^{2}}+x+1}dx $ 

 $ =\int{2}\sqrt{t}dt $ 

 $ =2\int{\sqrt{t}}dt $ 

 $ =2\left( \dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right)+C $ 

 $ =\dfrac{4}{3}{{\left( {{x}^{2}}+x+1 \right)}^{\dfrac{3}{2}}}+C $ 

where C is an arbitrary constant.


10. Integrate  $ \dfrac{1}{x-\sqrt{x}} $ 

Ans:

The given function can be rewritten as

 $ \dfrac{1}{x-\sqrt{x}}=\dfrac{1}{\sqrt{x}\left( \sqrt{x}-1 \right)} $ 

Let $ \left( \sqrt{x}-1 \right)=t $ 

 $ \therefore \dfrac{1}{2\sqrt{x}}dx=dt $ 

 $ \Rightarrow \int{\dfrac{1}{\sqrt{x}(\sqrt{x}-1)}}dx=\int{\dfrac{2}{t}}dt $ 

 $ =2\log |t|+C $ 

 $ =2\log |\sqrt{x}-1|+C $ 

where C is an arbitrary constant.


11. Integrate  $ \dfrac{x}{\sqrt{x+4}},x>0 $ 

Ans:

Let  $ x+4=t $ 

 $ \therefore dx=dt $ 

 $ \int{\dfrac{x}{\sqrt{x+4}}}dx=\int{\dfrac{(t-4)}{\sqrt{t}}}dt $ 

 $ =\int{\left( \sqrt{t}-\dfrac{4}{\sqrt{t}} \right)}dt $ 

 $ =\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}-4\left( \dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \right)+C $ 

 $ =\dfrac{2}{3}{{(t)}^{\dfrac{3}{2}}}-8{{(t)}^{\dfrac{1}{2}}}+C $ 

 $ =\dfrac{2}{3}t\cdot {{t}^{\dfrac{1}{2}}}-8{{t}^{\dfrac{1}{2}}}+C $ 

 $ =\dfrac{2}{3}{{t}^{\dfrac{1}{2}}}(t-12)+C $ 

 $ =\dfrac{2}{3}{{(x+4)}^{\dfrac{1}{2}}}(x+4-12)+C $ 

 $ =\dfrac{2}{3}\sqrt{x+4}(x-8)+C $ 

where C is an arbitrary constant.


12. Integrate  $ {{\left( {{x}^{3}}-1 \right)}^{\dfrac{1}{3}}}{{x}^{5}} $ 

Ans:

Let  $ {{x}^{3}}-1=t $ 

 $ \therefore 3{{x}^{2}}dx=dt $ 

 $ \Rightarrow \int{{{\left( {{x}^{3}}-1 \right)}^{\dfrac{1}{3}}}}{{x}^{5}}dx=\int{{{\left( {{x}^{3}}-1 \right)}^{\dfrac{1}{3}}}}{{x}^{3}}{{x}^{2}}dx $ 

 $ =\int{{{t}^{\dfrac{1}{3}}}}(t+1)\dfrac{dt}{3}\ $ \ $ =\dfrac{1}{3}\int{\left({{t}^{\dfrac{4}{3}}}+{{t}^{\dfrac{1}{3}}}\right)}dt $ 

 $ =\dfrac{1}{3}\left[ \dfrac{{{t}^{\dfrac{7}{3}}}}{\dfrac{7}{3}}+\dfrac{{{t}^{\dfrac{4}{3}}}}{\dfrac{4}{3}} \right]+C $ 

 $ =\dfrac{1}{3}\left[ \dfrac{3}{7}{{t}^{\dfrac{7}{3}}}+\dfrac{3}{4}{{t}^{\dfrac{4}{3}}} \right]+C $ 

 $ =\dfrac{1}{7}{{\left( {{x}^{3}}-1 \right)}^{\dfrac{7}{3}}}+\dfrac{1}{4}{{\left( {{x}^{3}}-1 \right)}^{\dfrac{4}{3}}}+C $ 

where C is an arbitrary constant.


13. Integrate  $ \dfrac{{{x}^{2}}}{{{\left( 2+3{{x}^{3}} \right)}^{3}}} $ 

Ans:

Let  $ 2+3{{x}^{3}}=t $ 

$ \therefore 9{{x}^{2}}dx=dt $ 

$ \Rightarrow \int{\dfrac{{{x}^{2}}}{{{\left( 2+3{{x}^{3}}           \right)}^{3}}}}dx=\dfrac{1}{9}\int{\dfrac{dt}{{{(t)}^{3}}}} $ 

$ =\dfrac{1}{9}\left[ \dfrac{{{t}^{-2}}}{-2} \right]+C $ 

$ =\dfrac{-1}{18}\left( \dfrac{1}{{{t}^{2}}} \right)+C $ 

$ =\dfrac{-1}{18{{\left( 2+3{{x}^{3}} \right)}^{2}}}+C $ 

where C is an arbitrary constant.



14. Integrate \[\dfrac{1}{x{{\left( \log x \right)}^{m}}},x>0\]

Ans:

Let  $ \log \text{x}=\text{t} $ 

 $ \dfrac{1}{x}dx=dt $ 

 $ \Rightarrow \int{\dfrac{1}{x{{(\log x)}^{m}}}}dx=\int{\dfrac{dt}{{{(t)}^{m}}}} $ 

 $ =\dfrac{{{t}^{-m+1}}}{-m+1}+C $ 

 $ =\dfrac{{{(\log x)}^{1-m}}}{(1-m)}+C $ 

where C is an arbitrary constant.


15. Integrate  $ \dfrac{x}{9-4{{x}^{2}}} $ 

Ans:

Let  $ 9-4{{x}^{2}}=t $ 

 $ \therefore -8xdx=dt $ 

 $ \Rightarrow \int{\dfrac{x}{9-4{{x}^{2}}}}dx=\dfrac{-1}{8}\int{\dfrac{1}{t}}dt $ 

 $ =\dfrac{-1}{8}\log |t|+C $ 

 $ =\dfrac{-1}{8}\log \left| 9-4{{x}^{2}} \right|+C $  

where C is an arbitrary constant.


16. Integrate  $ {{e}^{2x+3}} $ 

Ans:

Let  $ 2x+3=t $ 

 $ \therefore 2dx=dt $ 

 $ \Rightarrow \int{{{e}^{2x+3}}}dx=\dfrac{1}{2}\int{{{e}^{t}}}dt $ 

 $ =\dfrac{1}{2}\left( {{e}^{t}} \right)+C $ 

 $ =\dfrac{1}{2}\left( {{e}^{2x+3}} \right)+C $ 

where C is an arbitrary constant.


17. Integrate  $ \dfrac{x}{{{e}^{{{x}^{2}}}}} $ 

Ans:

Let  $ {{\text{x}}^{2}}=\text{t} $ 

 $ \therefore 2\text{xdx}=\text{dt} $ 

 $ \Rightarrow \int{\dfrac{x}{{{e}^{{{x}^{2}}}}}}dx=\dfrac{1}{2}\int{\dfrac{1}{{{e}^{t}}}}dt $ 

 $ =\dfrac{1}{2}\int{{{e}^{-t}}}dt $ 

 $ =\dfrac{1}{2}\left( \dfrac{{{e}^{-t}}}{-1} \right)+C $ 

 $ =-\dfrac{1}{2}{{e}^{-{{x}^{2}}}}+C $ 

 $ =\dfrac{-1}{2{{e}^{{{x}^{2}}}}}+C $ 

 where C is an arbitrary constant.


18. Integrate  $ \dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}} $ 

Ans:

Let  $ {{\tan }^{-1}}x=t $ 

 $ \therefore \dfrac{1}{1+{{x}^{2}}}dx=dt $ 

 $ \Rightarrow \int{\dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}}dx=\int{{{e}^{t}}}dt $ 

 $ ={{e}^{t}}+C $ 

 $ ={{e}^{{{\tan }^{-1}}x}}+C $ 

where C is an arbitrary constant.


19. Integrate \[\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1}\]

Ans:

Dividing the given function’s numerator and denominator by  $ {{e}^{x}} $ , we obtain,

\[\dfrac{\dfrac{\left( {{e}^{2x}}-1 \right)}{{{e}^{x}}}}{\dfrac{\left( {{e}^{2x}}+1 \right)}{{{e}^{x}}}}=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}\]

Let \[{{e}^{x}}+{{e}^{-x}}=t\]

\[\left( {{e}^{x}}-{{e}^{-x}} \right)dx=dt\]

\[\Rightarrow \int{\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1}}dx=\int{\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}}dx\]

\[=\int{\dfrac{dt}{t}}\]

\[=\log |t|+C\]

\[=\log |{{e}^{x}}-{{e}^{-x}}|+C\]

where C is an arbitrary constant.


20. Integrate \[\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}\]

Ans:

Let  $ {{e}^{2x}}+{{e}^{-2x}}=t $ 

 $ \Rightarrow 2{{e}^{2x}}-2{{e}^{-2x}}dx=dt $ 

 $ \Rightarrow 2\left( {{e}^{2x}}-{{e}^{-2x}} \right)dx=dt $ 

 $ \Rightarrow \int{\left( \dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}} \right)}dx=\int{\dfrac{dt}{2t}} $ 

 $ =\dfrac{1}{2}\int{\dfrac{1}{t}}d $ 

 $ =\dfrac{1}{2}\log |t|+C $ 

 $ =\dfrac{1}{2}\log \left| {{e}^{2x}}+{{e}^{-2x}} \right|+C $ 

where C is an arbitrary constant.


21. Integrate  $ {{\tan }^{2}}\left( 2x-3 \right) $ 

Ans:

 $ {{\tan }^{2}}(2x-3)={{\sec }^{2}}(2x-3)-1 $ 

Let  $ 2\text{x}-3=\text{t} $ 

 $ \therefore 2\text{dx}=\text{dt} $ 

 $ \Rightarrow \int{{{\tan }^{2}}}(2x-3)dx=\int{\left[ {{\sec }^{2}}(2x-3)-1 \right]}dx $ 

 $ =\dfrac{1}{2}\int{\left( {{\sec }^{2}}t \right)}dt-\int{1}dx $ 

 $ =\dfrac{1}{2}\int{{{\sec }^{2}}}tdt-\int{1}dx $ 

 $ =\dfrac{1}{2}\tan t-x+C $ 

 $ =\dfrac{1}{2}\tan (2x-3)-x+C $ 

where C is an arbitrary constant.


22. Integrate $ {{\sec }^{2}}\left( 7-4x \right) $ 

Ans:

Let  $ 7-4x=t $ 

 $ \therefore -4~\text{d}x=dt $ 

 $ \therefore \int{{{\sec }^{2}}}(7-4x)dx=\dfrac{-1}{4}\int{{{\sec }^{2}}}tdt $ 

 $ =\dfrac{-1}{4}(\tan t)+C $ 

 $ =\dfrac{-1}{4}\tan (7-4x)+C $ 

where C is an arbitrary constant.


23. Integrate  $ \dfrac{{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}} $ 

Ans:

Let  $ {{\sin }^{-1}}x=t $ 

 $ \dfrac{1}{\sqrt{1-{{x}^{2}}}}dx=dt $ 

 $ \Rightarrow \int{\dfrac{{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}dx=\int{t}dt $ 

 $ =\dfrac{{{t}^{2}}}{2}+C $ 

 $ =\dfrac{{{\left( {{\sin }^{-1}}x \right)}^{2}}}{2}+C $ 

where C is an arbitrary constant.


24. Integrate  $ \dfrac{2\cos x-3\sin x}{6\cos x+4\sin x} $ 

Ans:

The given function is 

 $ \dfrac{2\cos x-3\sin x}{6\cos x+4\sin x}=\dfrac{2\cos x-3\sin x}{2(3\cos x+2\sin x)} $ 

Let  $ 3\cos x+2\sin x=t $ 

 $ (-3\sin x+2\cos x)dx=dt $ 

 $ \int{\dfrac{2\cos x-3\sin x}{6\cos x+4\sin x}}dx=\int{\dfrac{dt}{2t}} $ 

 $ =\dfrac{1}{2}\int{\dfrac{1}{t}}dt $ 

 $ =\dfrac{1}{2}\log |t|+C $ 

 $ =\dfrac{1}{2}\log |2\sin x+3\cos x|+C $ 

where C is an arbitrary constant.


25. Integrate  $ \dfrac{1}{{{\cos }^{2}}x{{\left( 1-\tan x \right)}^{2}}} $ 

Ans:

The given function is,

 $ \dfrac{1}{{{\cos }^{2}}x{{(1-\tan x)}^{2}}}=\dfrac{{{\sec }^{2}}}{{{(1-\tan x)}^{2}}} $ 

Let  $ (1-\tan x)=t $ 

 $ -{{\sec }^{2}}xdx=dt $ 

 $ \Rightarrow \int{\dfrac{{{\sec }^{2}}}{{{(1-\tan x)}^{2}}}}dx=\int{\dfrac{-dt}{{{t}^{2}}}} $ 

 $ =-\int{{{t}^{-2}}}dt $ 

 $ =+\dfrac{1}{t}+C $ 

 $ =\dfrac{1}{\left( 1-\tan x \right)}+C $ 

where C is an arbitrary constant.


26. Integrate  $ \dfrac{\cos \sqrt{x}}{\sqrt{x}} $ 

Ans:

let  $ \sqrt{x}=t $ 

 $ \dfrac{1}{2\sqrt{x}}dx=dt $ 

 $ \Rightarrow \int{\dfrac{\cos \sqrt{x}}{\sqrt{x}}}dx=2\int{\cos }tdt=2\sin t+C=2\sin \sqrt{x}+C $ 

where C is an arbitrary constant.


27. Integrate  $ \sqrt{\sin 2x}\cos 2x $ 

Ans:

Let  $ \sin 2\text{x}=\text{t} $ 

So,  $ 2\cos 2\text{xdx}=\text{dt} $ 

 $ \Rightarrow \int{\sqrt{\sin 2x}}\cos 2xdx $ 

 $ =\dfrac{1}{2}\left( \dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right)+C $ 

 $ =\dfrac{1}{2}\int{\sqrt{t}}dt $ 

 $ =\dfrac{1}{3}{{t}^{\dfrac{3}{2}}}+C $ 

 $ =\dfrac{1}{3}{{(\sin 2x)}^{\dfrac{3}{2}}}+C $ 

where C is an arbitrary constant.


28. Integrate  $ \dfrac{\cos x}{\sqrt{1+\sin x}} $ 

Ans:

Let  $ 1+\sin \text{x}=\text{t} $ 

 $ \therefore \cos \text{xdx}=\text{dt} $ 

 $ \Rightarrow \int{\dfrac{\cos x}{\sqrt{1+\sin x}}}dx=\int{\dfrac{dt}{\sqrt{t}}} $ 

 $ =\dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{1}{2}}+C $ 

 $ =2\sqrt{t}+\text{C} $ 

 $ =2\sqrt{1+\sin x}+C $ 

where C is an arbitrary constant.


29. Integrate  $ \cot x\log \sin x $ 

Ans:

Let \[\log \sin x=t\]

\[\Rightarrow \dfrac{1}{\sin x}\cdot \cos xdx=dt\]

\[\therefore \cot xdx=dt\]

\[\Rightarrow \int{\cot }x\log \sin xdx=\int{t}dt\]

\[=\dfrac{{{t}^{2}}}{2}+C\]

\[=\dfrac{1}{2}{{(\log \sin x)}^{2}}+C\]

where C is an arbitrary constant.


30. Integrate  $ \dfrac{\sin x}{1+\cos x} $ 

Ans:

$ \Rightarrow \int{\dfrac{\sin x}{1+\cos x}}dx=\int{-}\dfrac{dt}{t} $ 

$ =-\log |t|+C $ 

$ =-\log |1+\cos x|+C $ 

where C is an arbitrary constant.


31. Integrate  $ \dfrac{\sin x}{{{\left( 1+\cos x \right)}^{2}}} $ 

Ans:

Let  $ 1+\cos \text{x}=\text{t} $ 

 $ \therefore -\sin \text{xdx}=\text{dt} $ 

 $ \Rightarrow \int{\dfrac{\sin x}{{{(1+\cos x)}^{2}}}}dx=\int{-}\dfrac{dt}{{{t}^{2}}} $ 

 $ =-\int{{{t}^{-2}}}dt $ 

 $ =\dfrac{1}{t}+C $ 

 $ =\dfrac{1}{1+\cos x}+C $ 

where C is an arbitrary constant.


32. Integrate $ \dfrac{1}{1+\cot x} $ 

Ans:

Let \[I=\int{\dfrac{1}{1+\cot x}}dx\]

 $ =\int{\dfrac{1}{1+\dfrac{\cos x}{\sin x}}}dx $ 

 $ =\int{\dfrac{\sin x}{\sin x+\cos x}}dx $ 

 $ =\dfrac{1}{2}\int{\dfrac{2\sin x}{\sin x+\cos x}}dx $ 

\[=\dfrac{1}{2}\int{\dfrac{(\sin x+\cos x)+(\sin x-\cos x)}{(\sin x+\cos x)}}dx\]

 $ =\dfrac{1}{2}\int{1}dx+\dfrac{1}{2}\int{\dfrac{\sin x-\cos x}{\sin x+\cos x}}dx $ 

 $ =\dfrac{1}{2}(x)+\dfrac{1}{2}\int{\dfrac{\sin x-\cos x}{\sin x+\cos x}}dx $ 

Let  $ \sin x+\cos x=t\Rightarrow (\cos x-\sin x)dx=dt $ 

 $ \therefore I=\dfrac{x}{2}+\dfrac{1}{2}\int{\dfrac{-(dt)}{t}} $ 

 $ =\dfrac{x}{2}-\dfrac{1}{2}\log |t|+C $ 

 $ =\dfrac{x}{2}-\dfrac{1}{2}\log |\sin x+\cos x|+C $ 

where C is an arbitrary constant.


33. Integrate  $ \dfrac{1}{1-\tan x} $ 

Ans:

Let  $ I=\int{\dfrac{1}{1-\tan x}}dx $ 

 $ =\int{\dfrac{1}{1-\dfrac{\sin x}{\cos x}}}dx $ 

 $ =\int{\dfrac{\cos x}{\cos x-\sin x}}dx $ 

 $ =\dfrac{1}{2}\int{\dfrac{2\cos x}{\cos x-\sin x}}dx $ 

 $ =\dfrac{1}{2}\int{\dfrac{(\cos x-\sin x)+(\cos x+\sin x)}{(\cos x-\sin x)}}dx $ 

 $ =\dfrac{1}{2}\int{1}dx+\dfrac{1}{2}\int{\dfrac{\cos x+\sin x}{\cos x-\sin x}}dx $ 

 $ =\dfrac{x}{2}+\dfrac{1}{2}\int{\dfrac{\cos x+\sin x}{\cos x-\sin x}}dx $ 

Put  $ \cos x-\sin x=t\Rightarrow (-\sin x-\cos x)dx=dt $ 

 $ \therefore I=\dfrac{x}{2}+\dfrac{1}{2}\int{\dfrac{-(dt)}{t}} $ 

 $ =\dfrac{x}{2}-\dfrac{1}{2}\log |t|+C $ 

 $ =\dfrac{x}{2}-\dfrac{1}{2}\log |\cos x-\sin x|+C $ 

where C is an arbitrary constant.


34. Integrate  $ \dfrac{\sqrt{\tan x}}{\sin x\cos x} $ 

Ans:

Let  $ I=\int{\dfrac{\sqrt{\tan x}}{\sin x\cos x}}dx $ 

 $ =\int{\dfrac{\sqrt{\tan x}\times \cos x}{\sin x\cos x\times \cos x}}dx $ 

 $ =\int{\dfrac{\sqrt{\tan x}}{\tan x{{\cos }^{2}}x}}dx $ 

 $ =\int{\dfrac{{{\sec }^{2}}xdx}{\sqrt{\tan x}}} $ 

Let  $ \tan x=t\Rightarrow {{\sec }^{2}}xdx=dt $ 

 $ \therefore I=\int{\dfrac{dt}{\sqrt{t}}} $ 

 $ =2\sqrt{t}+C $ 

 $ =2\sqrt{\tan x+C} $ 

where C is an arbitrary constant.


35. Integrate  $ \dfrac{{{\left( 1+\log x \right)}^{2}}}{x} $ 

Ans:

Let  $ 1+\log x=t $ 

 $ \therefore \dfrac{1}{x}dx=dt $ 

 $ \Rightarrow \int{\dfrac{{{(1+\log x)}^{2}}}{x}}dx\text{ }=\int{{{t}^{2}}}dt\text{ } $ 

 $ =\dfrac{{{t}^{3}}}{3}+C $

 $ =\dfrac{{{(1+\log x)}^{3}}}{3}+C $


where C is an arbitrary constant.


36. Integrate  $ \dfrac{\left( x+1 \right){{\left( x+\log x \right)}^{2}}}{x} $ 

Ans:

The given function can be rewritten as

 $ \dfrac{(x+1){{(x+\log x)}^{2}}}{x} $ 

 $ =\left( 1+\dfrac{1}{x} \right){{(x+\log x)}^{2}} $ 

Let  $ (x+\log x)=t $ 

 $ \therefore \left( 1+\dfrac{1}{x} \right)dx=dt $ 

 $ \Rightarrow \int{\left( 1+\dfrac{1}{x} \right)}{{(x+\log x)}^{2}}dx\text{ } $ 

 $ =\int{{{t}^{2}}}dt $ 

 $ =\dfrac{{{t}^{3}}}{3}+C $ 

 $ =\dfrac{1}{3}{{(x+\log x)}^{3}}+C $ 

where C is an arbitrary constant. 


37. Integrate  $ \dfrac{{{x}^{3}}\sin \left( {{\tan }^{-1}}{{x}^{4}} \right)}{1+{{x}^{8}}} $ 

Ans:

$ \therefore 4{{\text{x}}^{3}}\text{dx}=\text{dt} $ 

 $ \Rightarrow \int{\dfrac{{{x}^{3}}\sin \left( {{\tan }^{-1}}{{x}^{4}} \right)}{1+{{x}^{8}}}}dx=\dfrac{1}{4}\int{\dfrac{\sin \left( {{\tan }^{-1}}t \right)}{1+{{t}^{2}}}}dt $ 

Let  $ {{\tan }^{-1}}t=u $ 

 $ \therefore \dfrac{1}{1+{{t}^{2}}}dt=du $ 

From (1), we obtain

 $ \int{\dfrac{{{x}^{3}}\sin \left( {{\tan }^{-1}}{{x}^{4}} \right)dx}{1+{{x}^{8}}}}=\dfrac{1}{4}\int{\sin }udu $ 

 $ =\dfrac{1}{4}(-\cos u)+C $ 

 $ =-\dfrac{1}{4}\cos \left( {{\tan }^{-1}}t \right)+C $ 

 $ =\dfrac{-1}{4}\cos \left( {{\tan }^{-1}}{{x}^{4}} \right)+C $ 

where C is an arbitrary constant. 


38. Here, $ \int{\dfrac{10{{x}^{9}}+{{10}^{x}}{{\log }_{e}}10}{{{x}^{10}}+{{10}^{x}}}}dx $  equals 

A.$ {{10}^{x}}-{{x}^{10}}+C $ 

B.$ {{10}^{x}}+{{x}^{10}}+C $ 

C.$ {{\left( {{10}^{x}}-{{x}^{10}} \right)}^{-1}}+C $ 

D.$ \log \left( {{10}^{x}}+{{x}^{10}} \right)+C $ 

Ans:

Let  $ {{x}^{10}}+{{10}^{x}}=t $ 

 $ \therefore \left( 10{{x}^{9}}+{{10}^{x}}{{\log }_{e}}10 \right)dx=\int{\dfrac{dt}{t}} $ 

 $ \Rightarrow \int{\dfrac{10{{x}^{9}}+{{10}^{x}}{{\log }_{\varepsilon }}10}{{{x}^{10}}+10x}}dx=\int{\dfrac{dt}{t}} $ 

 $ =\log t+C $ 

 $ =\log \left( {{10}^{x}}+{{x}^{10}} \right)+C $ 

Hence, the correct Answer is D.


39. Here, \[\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}\]equals 

A.\[\tan x+\cot x+C\]

B.\[\tan x-\cot x+C\]

C.\[\tan x\cot x+C\]

D.\[\tan x-\cot 2x+C\]

Ans:

Let  $ I=\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}} $ 

 $ =\int{\dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}}dx $ 

 $ =\int{\dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}}dx+\int{\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}}dx $ 

 $ =\int{{{\sec }^{2}}}xdx+\int{{{\operatorname{cosec}}^{2}}}dx $ 

 $ =\tan x-\cot x+C $ 

Hence, the correct Answer is B.


Conclusion

The NCERT Solutions for Class 12 Maths Exercise 7.2 Chapter 7 - Integrals, Ex 7.2 class 12 Maths, provided by Vedantu, offers comprehensive guidance for mastering integration techniques. This exercise focuses on the application of various integration methods, including substitution and integration by parts, to solve complex integrals. Key topics include Integration using substitution. Integration by parts. Solving integrals involving trigonometric functions and logarithms. By solving these questions, students can solidify their understanding and improve their problem-solving skills in integration​.


Class 12 Maths Chapter 7: Exercises Breakdown

S.No.

Chapter 7 - Integrals Exercises in PDF Format

1

Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs)

2

Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs)

4

Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs)

5

Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

6

Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs)

7

Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers)

8

Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs)

9

Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs)

10

Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions



CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

1. Where can I find complete and accurate NCERT Solutions for Class 12 Maths Chapter 7 (Integrals) for the 2025-26 session?

Vedantu provides detailed, step-by-step NCERT Solutions for Class 12 Maths Chapter 7, Integrals, which are fully updated for the CBSE 2025-26 syllabus. These solutions are crafted by subject matter experts to explain the correct methodology for solving every problem in the NCERT textbook, ensuring you follow the format required for board exams.

2. What is the main technique required to solve problems in Exercise 7.2 of NCERT Class 12 Maths Chapter 7?

Exercise 7.2 of Chapter 7 primarily focuses on the Integration by Substitution method. Most problems in this section require you to identify a part of the integrand, substitute it with a new variable (like 't'), and transform the integral into a simpler, standard form that can be solved using basic integration formulas.

3. How do I decide which part of a function to substitute when using the integration by substitution method in Chapter 7?

Choosing the correct function for substitution is a key step. A good rule of thumb is to look for a function whose derivative is also present in the integrand. Follow these steps:

  • Select a function, let's say g(x), such that its derivative g'(x) dx is also a factor in the integral.
  • For example, in the integral ∫(2x)/(1+x²) dx, if you choose t = 1+x², its derivative is dt = 2x dx, which is the numerator.
  • This substitution simplifies the integral to ∫(1/t) dt, which is easily solvable as log|t| + C.

With practice, you can quickly identify the correct function to substitute.

4. Why is it crucial to add the constant of integration '+ C' at the end of every indefinite integral solution in Chapter 7?

The constant of integration, '+ C', is essential because it represents a family of infinitely many functions that have the same derivative. For instance, the derivative of x², x²+5, and x²-10 are all 2x. When we integrate 2x, we get x², but we don't know the original constant. Adding '+ C' to the result makes the solution general and complete for all indefinite integrals. Omitting this in an exam can lead to a loss of marks.

5. What is the correct step-by-step method to solve integrals of trigonometric functions, as shown in the NCERT solutions for Integrals?

The NCERT solutions approach integrals involving trigonometric functions systematically, often in this order:

  1. Simplify using Identities: First, attempt to simplify the function using fundamental trigonometric identities (e.g., sin²x + cos²x = 1) or double-angle formulas (e.g., sin(2x) = 2sin(x)cos(x)).
  2. Use Substitution: Look for a trigonometric function whose derivative is also present. For instance, in ∫tan(x) sec²(x) dx, you can substitute t = tan(x), as its derivative dt = sec²(x) dx is available.
  3. Apply Standard Formulas: After simplification, apply the standard integration formulas, such as ∫cos(x) dx = sin(x) + C or ∫sec²(x) dx = tan(x) + C.

6. How should I approach the Miscellaneous Exercise for Chapter 7? Are the problems more difficult than in other exercises?

Yes, the problems in the Miscellaneous Exercise are generally more challenging and are designed to be comprehensive. They often require a combination of different integration techniques (substitution, by parts, partial fractions) or clever algebraic manipulation before a method can be applied. It is recommended to attempt this exercise only after mastering all the previous exercises to test your overall understanding of the chapter.

7. In the substitution method, what is the mathematical logic behind replacing 'dx' with an expression involving 'dt'?

Replacing 'dx' is a mandatory step rooted in the chain rule of differentiation. When you make a substitution like t = g(x), you are changing the entire integral from being in terms of the variable 'x' to being in terms of the variable 't'. To do this correctly, you must also change the differential element. By differentiating t = g(x) with respect to x, you get dt/dx = g'(x), which rearranges to dt = g'(x) dx. This step ensures the entire integral is consistently expressed in the new variable 't'.

8. How do the NCERT solutions solve tricky integrals like ∫(1 / (1 - tan x)) dx?

For complex rational trigonometric functions like this one, the NCERT solutions use a specific, multi-step strategy:

  1. Convert to Sine and Cosine: First, the function is rewritten in its fundamental form: ∫(cos x / (cos x - sin x)) dx.
  2. Manipulate the Numerator: The key trick is to express the numerator as a combination of the denominator and its derivative. You multiply and divide by 2, then rewrite 2cos(x) as (cos x - sin x) + (cos x + sin x).
  3. Split the Integral: This allows you to break the integral into two simpler parts. One part becomes ∫1 dx, and the other becomes ∫((cos x + sin x)/(cos x - sin x)) dx, which can be easily solved using substitution.

9. What are the three fundamental methods of integration covered in the NCERT solutions for Class 12 Maths Chapter 7?

The NCERT solutions for Chapter 7, Integrals, systematically cover three fundamental methods for solving integration problems:

  • Integration by Substitution: Used when the integrand contains a function and its derivative.
  • Integration using Partial Fractions: Used for integrating rational functions (a ratio of two polynomials) by breaking them into simpler fractions.
  • Integration by Parts: Used for integrating the product of two different types of functions, often following the ILATE rule for choosing the functions.

10. For the CBSE board exam, how closely should I follow the steps given in Vedantu's NCERT solutions?

It is highly recommended to follow the steps very closely. The NCERT solutions provided by Vedantu are structured to align with the CBSE marking scheme for the 2025-26 board exams. Each step, from stating the formula used, showing the substitution, and writing the final answer with the constant of integration, is crucial. Presenting your answers in this detailed, step-by-step format ensures clarity and helps you secure full marks.