Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 12 Maths Chapter 7 Integrals Exercise 7.10 - 2025-26

ffImage
banner

Integrals Questions and Answers - Free PDF Download

In NCERT Solutions Class 12 Maths Chapter 7 Exercise 7 10, you'll explore the important properties of definite integrals. This part of your book is all about simple tricks and smart techniques to solve tough integration problems. If you ever felt stuck with questions like, “How do I use properties to solve definite integrals faster?”, this exercise will make things much clearer.

toc-symbolTable of Content
toggle-arrow

With Vedantu’s easy-to-follow, step-by-step NCERT Solutions, you can practise all types of problems from the chapter. If you want extra support, the full set of solutions is available as a handy free PDF download—perfect for last-minute revision or regular study. For more topic-wise help or to check what else is covered, you can also visit the official Class 12 Maths Syllabus.


Mastering these solutions will boost your confidence for board exams and help you get better at identifying which property to apply in each type of question. If you need help with other chapters, find all the NCERT Solutions for Class 12 Maths in one place.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 7 - Integrals

Exercise 7.10

Solve the following integrals.

1. $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}$

Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}$                     …(1)

We know that,

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, the integral becomes

$I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}\left( \dfrac{\pi }{2}-x \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$                          …(2)

Adding equation (1) and (2),

$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)dx}$

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$

$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$

$\Rightarrow 2I=\dfrac{\pi }{2}$

$\Rightarrow I=\dfrac{\pi }{4}$

$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}=\dfrac{\pi }{4}$


2. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$

Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$                     …(1)

We know that,

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, the integral becomes

$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\sin \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\cos \left( \dfrac{\pi }{2}-x \right)}}dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$                                         …(2)

Adding equation (1) and (2),

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$

$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$

$\Rightarrow 2I=\dfrac{\pi }{2}$

$\Rightarrow I=\dfrac{\pi }{4}$

$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}=\dfrac{\pi }{4}$


3. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}$

Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}$                        …(1)

We know that,

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, the integral becomes

$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}\left( \dfrac{\pi }{2}-x \right)dx}{{{\sin }^{\dfrac{3}{2}}}\left( \dfrac{\pi }{2}-x \right)+{{\cos }^{\dfrac{3}{2}}}\left( \dfrac{\pi }{2}-x \right)}}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}$                                         …(2)

Adding equation (1) and (2),

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}dx}$

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$

$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$

$\Rightarrow 2I=\dfrac{\pi }{2}$

$\Rightarrow I=\dfrac{\pi }{4}$

$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}=\dfrac{\pi }{4}$


4. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}$

Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}$                        …(1)

We know that,

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, the integral becomes

$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}\left( \dfrac{\pi }{2}-x \right)dx}{{{\sin }^{5}}\left( \dfrac{\pi }{2}-x \right)+{{\cos }^{5}}\left( \dfrac{\pi }{2}-x \right)}}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}$                                         …(2)

Adding equation (1) and (2),

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{5}}x+{{\cos }^{5}}x}{{{\sin }^{5}}x+{{\cos }^{5}}x}dx}$

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$

$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$

$\Rightarrow 2I=\dfrac{\pi }{2}$

$\Rightarrow I=\dfrac{\pi }{4}$

$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}=\dfrac{\pi }{4}$


5. $\int\limits_{-5}^{5}{\left| x+2 \right|}dx$

Ans:  Let $I=\int\limits_{-5}^{5}{\left| x+2 \right|}dx$ 

Since, $\left( x+2 \right)\le 0$ for interval $\left[ -5,-2 \right]$ .

Therefore, $\left( x+2 \right)\ge 0$ for interval $\left[ -2,5 \right]$.

As, $\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{c}{f\left( x \right)}dx+\int\limits_{c}^{b}{f\left( x \right)dx}$

Hence, $\int\limits_{-5}^{-2}{-\left( x+2 \right)}dx+\int\limits_{-2}^{5}{\left( x+2 \right)dx}$ .

Thus, 

$I=\int\limits_{-5}^{-2}{-\left( x+2 \right)}dx+\int\limits_{-2}^{5}{\left( x+2 \right)dx}$

$=-\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-5}^{2}+\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-2}^{5}$

$=-\left[ \dfrac{{{\left( 2 \right)}^{2}}}{2}+2\left( 2 \right)-\dfrac{{{\left( -5 \right)}^{2}}}{2}-2\left( -5 \right) \right]+\left[ \dfrac{{{\left( 5 \right)}^{2}}}{2}+2\left( 5 \right)-\dfrac{{{\left( -2 \right)}^{2}}}{2}-2\left( -2 \right) \right]$$=-\left[ 2-4-\dfrac{25}{2}+10 \right]+\left[ \dfrac{25}{2}+10-2+4 \right]$

$=-2+4+\dfrac{25}{2}+10+\dfrac{25}{2}+10-2+4$

$=29$


6. $\int\limits_{2}^{8}{\left| x-5 \right|}dx$

Ans: Let $I=\int\limits_{2}^{8}{\left| x-5 \right|}dx$ 

Since, $\left( x-5 \right)\le 0$ for interval $\left[ 2,5 \right]$ .

Therefore, $\left( x-5 \right)\ge 0$ for interval $\left[ 5,8 \right]$.

As, $\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{c}{f\left( x \right)}dx+\int\limits_{c}^{b}{f\left( x \right)dx}$

Hence, $\int\limits_{2}^{5}{-\left( x-5 \right)}dx+\int\limits_{5}^{8}{\left( x-5 \right)dx}$ .

Thus, 

$I=\int\limits_{2}^{5}{-\left( x-5 \right)}dx+\int\limits_{5}^{8}{\left( x-5 \right)dx}$

$=-\left[ \dfrac{{{x}^{2}}}{2}-5x \right]_{2}^{5}+\left[ \dfrac{{{x}^{2}}}{2}-5x \right]_{5}^{8}$

$=-\left[ \dfrac{{{\left( 5 \right)}^{2}}}{2}-5\left( 5 \right)-\dfrac{{{\left( 2 \right)}^{2}}}{2}+5\left( 2 \right) \right]+\left[ \dfrac{{{\left( 8 \right)}^{2}}}{2}-5\left( 8 \right)-\dfrac{{{\left( 5 \right)}^{2}}}{2}+5\left( 5 \right) \right]$

$=-\left[ \dfrac{25}{2}-25-2+10 \right]+\left[ 32-40-\dfrac{25}{2}+25 \right]$

$=-\dfrac{25}{2}+25+2-10+32-40-\dfrac{25}{2}+25$

$=9$


7. $\int\limits_{0}^{1}{x{{\left( 1-x \right)}^{n}}dx}$

Ans: Let  $I=\int\limits_{0}^{1}{x{{\left( 1-x \right)}^{n}}dx}$

Thus, $I=\int\limits_{0}^{1}{\left( 1-x \right){{\left( 1-\left( 1-x \right) \right)}^{n}}dx}$

Since, $\int\limits_{1}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$.

Therefore, 

$\int\limits_{0}^{1}{\left( 1-x \right){{\left( x \right)}^{n}}}dx$

$=\int\limits_{0}^{1}{\left( {{x}^{n}}-{{x}^{n+1}} \right)dx}$

$=\left[ \dfrac{{{x}^{n+1}}}{n+1}-\dfrac{{{x}^{n+2}}}{n+2} \right]_{0}^{1}$

$=\left[ \dfrac{1}{n+1}-\dfrac{1}{n+2} \right]$

$=\dfrac{\left( n+2 \right)-\left( n+1 \right)}{\left( n+1 \right)\left( n+2 \right)}$

$=\dfrac{1}{\left( n+1 \right)\left( n+2 \right)}$


8. $\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}$

Ans:  Let  $I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}$

Since, $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, $I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\tan \left( \dfrac{\pi }{4}-x \right) \right]dx}$

$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\dfrac{\tan \dfrac{\pi }{4}-\tan x}{1+\tan \dfrac{\pi }{4}\tan x} \right]dx}$

$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left\{ 1+\dfrac{1-\tan x}{1+\tan x} \right\}dx}$

$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \dfrac{2}{1+\tan x}}dx$

$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx}-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)}dx$

$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx}-I$

$2I=\left[ x\log 2 \right]_{0}^{\dfrac{\pi }{4}}$

$2I=\dfrac{\pi }{4}\log 2$

$I=\dfrac{\pi }{8}\log 2$


9. $\int\limits_{0}^{2}{x\sqrt{2-x}dx}$

Ans: Let  $I=\int\limits_{0}^{2}{x\sqrt{2-x}dx}$

Since, $\int\limits_{0}^{a}{f\left( x \right)}dx=\int\limits_{0}^{a}{f\left( a-x \right)}dx$

Therefore, $I=\int\limits_{0}^{2}{\left( 2-x \right)}\sqrt{x}dx$

$=\int\limits_{0}^{2}{\left\{ 2{{x}^{{1}/{2}\;}}-{{x}^{{3}/{2}\;}} \right\}}dx$

$=\left[ 2\left( \dfrac{{{x}^{{3}/{2}\;}}}{{3}/{2}\;} \right)-\dfrac{{{x}^{{5}/{2}\;}}}{{5}/{2}\;} \right]_{0}^{2}$

$=\left[ \dfrac{4}{3}{{x}^{{3}/{2}\;}}-\dfrac{2}{5}{{x}^{{5}/{2}\;}} \right]_{0}^{2}$

$=\dfrac{4}{3}{{\left( 2 \right)}^{{3}/{2}\;}}-\dfrac{2}{5}{{\left( 2 \right)}^{{5}/{2}\;}}$

$=\dfrac{8\sqrt{2}}{3}-\dfrac{8\sqrt{2}}{5}$

$=\dfrac{40\sqrt{2}-24\sqrt{2}}{15}$

$=\dfrac{16\sqrt{2}}{15}$


10. $\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \sin 2x \right)dx}$

Ans: Let  $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \sin 2x \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \left( 2\sin x\cos x \right) \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \sin x-\log \cos x-\log 2 \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \sin x-\log \cos x-\log 2 \right)dx}$                      …….(1)

Since, 

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, 

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \cos x-\log \sin x-\log 2 \right)dx}$ …….(2)

On adding equation 1 and 2-

$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( -\log 2-\log 2 \right)dx}$

$\Rightarrow 2I=-2\log 2\int\limits_{0}^{\dfrac{\pi }{2}}{dx}$

$\Rightarrow I=-\log 2\left[ \dfrac{\pi }{2} \right]$

$\Rightarrow I=-\dfrac{\pi }{2}\left[ \log 2 \right]$

$\Rightarrow I=\dfrac{\pi }{2}\left[ -\log 2 \right]$

$\Rightarrow I=\dfrac{\pi }{2}\left[ \log \dfrac{1}{2} \right]$

$\Rightarrow I=\dfrac{\pi }{2}\log \dfrac{1}{2}$


11. $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$

Ans: Let  $I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$

Since, ${{\sin }^{2}}x$ is an even function.

Therefore , $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}=2\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$

As if $f\left( x \right)$ is an even function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$.

Hence,

$I=2\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$

$=2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-\cos 2x}{2}dx}$

$=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\cos 2x \right)dx}$

$=\left[ x-\dfrac{sin2x}{2} \right]_{0}^{\dfrac{\pi }{2}}$

$=\dfrac{\pi }{2}$


12. $\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$

Ans: Let  $I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$               …….(1)

Since, $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, $I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)}{1+\sin x\left( \pi -x \right)}dx}$

$I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)}{1+\sin x}dx}$                   …..(2)

On adding equation 1 and 2-

$2I=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx}$

$\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)+\left( 1-\sin x \right)}dx}$

$\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{\dfrac{\left( 1-\sin x \right)}{{{\cos }^{2}}x}dx}$

$\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{\left\{ {{\sec }^{2}}x-\tan x\sec x \right\}dx}$

$\Rightarrow 2I=\pi \left[ 2 \right]$

$\Rightarrow I=\pi $


13. $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{7}}xdx}$.

Ans: Let  $I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{7}}xdx}$

Since, ${{\sin }^{7}}x$ is an even function.

Therefore , $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}=0$

As if $f\left( x \right)$ is an odd function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=0$.

Hence, $I=0$


14. $\int\limits_{0}^{2\pi }{{{\cos }^{5}}xdx}$.

Ans: Let  

$I=\int\limits_{0}^{2\pi }{{{\cos }^{5}}xdx}$      

${{\cos }^{5}}\left( 2\pi -x \right)={{\cos }^{5}}x$                   …..(1)

If $f\left( 2a-x \right)=f\left( x \right)$ then $\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$.

If $f\left( 2a-x \right)=-f\left( x \right)$ then $\int\limits_{0}^{2a}{f\left( x \right)dx}=0$

Since, ${{\cos }^{5}}\left( \pi -x \right)=-{{\cos }^{5}}x$

Therefore, 

$I=2\int\limits_{0}^{2\pi }{{{\cos }^{5}}xdx}$

$\Rightarrow I=2\left( 0 \right)$

$\Rightarrow I=0$


15. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x-\cos x}{1+\sin x\cos x}dx}$

Ans:   Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x-\cos x}{1+\sin x\cos x}dx}$                     ……(1)

Since, 

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, 

$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)-\cos \left( \dfrac{\pi }{2}-x \right)}{1+\sin \left( \dfrac{\pi }{2}-x \right)\cos \left( \dfrac{\pi }{2}-x \right)}dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x-\sin x}{1+\cos x\sin x}dx}$                               ……(2)

On adding equation 1 and 2

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{0}{1+\cos x\sin x}dx}$

$\Rightarrow I=0$


16. $\int\limits_{0}^{\pi }{\log \left( 1+\cos x \right)dx}$

Ans: Let  

$I=\int\limits_{0}^{\pi }{\log \left( 1+\cos x \right)dx}$       …….(1)

Since, 

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, 

$\Rightarrow I=\int\limits_{0}^{\pi }{\log \left( 1+\cos \left( \pi -x \right) \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\pi }{\log \left( 1-\cos x \right)dx}$                 …….(2)

On adding equation 1 and 2-

$2I=\int\limits_{0}^{\pi }{\left\{ \log \left( 1-\cos x \right)+\log \left( 1-\cos x \right) \right\}dx}$

$\Rightarrow 2I=\int\limits_{0}^{\pi }{\log \left( 1-{{\cos }^{2}}x \right)dx}$

 $\Rightarrow 2I=\int\limits_{0}^{\pi }{\log {{\sin }^{2}}xdx}$

$\Rightarrow 2I=2\int\limits_{0}^{\pi }{\log \sin xdx}$

$\Rightarrow I=\int\limits_{0}^{\pi }{\log \sin xdx}$                                     …..(3)

Since, $\sin \left( \pi -x \right)=\sin x$

Therefore, $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\log \sin xdx}$                        ……(4)

$\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{2}}{\log \sin \left( \dfrac{\pi }{2}-x \right)dx}$

$\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{2}}{\log \cos xdx}$                                   …….(5)

On adding equation 4 and 5-

$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \sin x+\log \cos x \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \sin x+\log \cos x+\log 2-\log 2 \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log 2\sin x\cos x-\log 2 \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log 2\sin x\cos x \right)dx}-\int\limits_{0}^{\dfrac{\pi }{2}}{\log 2dx}$

Let $2x=t$

On differentiating-

$2dx=dt$

If $x=0$ then $t=0$.

Thus,

$\Rightarrow I=\dfrac{I}{2}-\dfrac{\pi }{2}\log 2$

$\Rightarrow \dfrac{I}{2}=-\dfrac{\pi }{2}\log 2$

$\Rightarrow I=-\pi \log 2$


17. $\int\limits_{0}^{a}{\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx}$

Ans:  Let $I=\int\limits_{0}^{a}{\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx}$                              …….(1)

Since, 

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, 

$I=\int\limits_{0}^{a}{\dfrac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}dx}$                                     …….(2)

On adding equation 1 and 2-

$2I=\int\limits_{0}^{a}{\dfrac{\sqrt{x}+\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}dx}$

$\Rightarrow 2I=\int\limits_{0}^{a}{dx}$

$\Rightarrow 2I=\left[ x \right]_{0}^{a}$

$\Rightarrow 2I=a$

$\Rightarrow I=\dfrac{a}{2}$


18. $\int\limits_{0}^{4}{\left| x-1 \right|dx}$

Ans: Let $I=\int\limits_{0}^{4}{\left| x-1 \right|dx}$

Thus, $\left( x-1 \right)\le 0$ when $0\le x\le 1$  and $\left( x-1 \right)\ge 0$ when $1\le x\le 4$

Since, $\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)}$

Therefore, $I=\int\limits_{0}^{1}{\left| x-1 \right|}dx+\int\limits_{1}^{4}{\left| x-1 \right|dx}$

$\Rightarrow I=\int\limits_{0}^{1}{-\left( x-1 \right)}dx+\int\limits_{1}^{4}{\left( x-1 \right)dx}$

$=\left[ x-\dfrac{{{x}^{2}}}{2} \right]_{0}^{1}+\left[ \dfrac{{{x}^{2}}}{2}-x \right]_{1}^{4}$

$=1-\dfrac{1}{2}+\dfrac{{{\left( 4 \right)}^{2}}}{2}-4-\dfrac{1}{2}+1$

$=1-\dfrac{1}{2}+8-4-\dfrac{1}{2}+1$

$=5$


19. Show that $\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)}dx$ , if $f$and $g$ are defined as $f\left( x \right)=f\left( a-x \right)$ and $g\left( x \right)+g\left( a-x \right)=4$ .

Ans: Let $\int\limits_{0}^{a}{f\left( x \right)}g\left( x \right)dx$              …….(1)

Since, 

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, 

$\Rightarrow \int\limits_{0}^{a}{f\left( a-x \right)}g\left( a-x \right)dx$

$\Rightarrow \int\limits_{0}^{a}{f\left( x \right)}g\left( a-x \right)dx$   ……(2)

On adding equation 1 and 2-

$2I=\int\limits_{0}^{a}{\left\{ f\left( x \right)g\left( x \right)+f\left( x \right)g\left( a-x \right) \right\}dx}$

$\Rightarrow 2I=\int\limits_{0}^{a}{f\left( x \right)\left\{ g\left( x \right)+g\left( a-x \right) \right\}dx}$

As, $g\left( x \right)+g\left( a-x \right)=4$.

Thus,

 $\Rightarrow 2I=\int\limits_{0}^{a}{4f\left( x \right)dx}$

$\Rightarrow I=2\int\limits_{0}^{a}{f\left( x \right)dx}$

Hence, $\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)}dx$ , if $f$and $g$ are defined as $f\left( x \right)=f\left( a-x \right)$ and $g\left( x \right)+g\left( a-x \right)=4$ .


20. The value of $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{x}^{3}}+x\cos x+{{\tan }^{5}}x+1 \right)dx}$ is 

  1. $0$

  2. $2$

  3. $\pi $

  4. $1$

Ans: Let $I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{x}^{3}}+x\cos x+{{\tan }^{5}}x+1 \right)dx}$

$\Rightarrow I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{x}^{3}} \right)dx}+\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( x\cos x \right)dx}+\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{\tan }^{5}}x \right)dx}+\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( 1 \right)dx}$

If $f\left( x \right)$ is an even function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)}dx$

And $f\left( x \right)$ is an odd function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=0$

Thus,

$I=0+0+0+2\int\limits_{0}^{\dfrac{\pi }{2}}{dx}$

$=2\left[ x \right]_{0}^{\dfrac{\pi }{2}}$

$=2\left[ \dfrac{\pi }{2} \right]$

$=\pi $

Hence, the correct option is C.


21. The value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\sin x}{4+3\cos x} \right)dx}$ is

  1. $2$

  2. $\dfrac{3}{4}$

  3. $0$

  4. $-2$

Ans: Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\sin x}{4+3\cos x} \right)dx}$                …..(1)

Since, 

$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$

Therefore, 

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\sin \left( \dfrac{\pi }{2}-x \right)}{4+3\cos \left( \dfrac{\pi }{2}-x \right)} \right)dx}$

$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\cos x}{4+3\sin x} \right)dx}$                       …….(2)

On adding equation 1 and 2-

$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\log 1dx}$

$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{0dx}$

$\Rightarrow I=0$

Hence, the correct option is C.


Formulas Used in Class 12 Chapter 7 Exercise 7.10

$\begin{array}{ll}\mathbf{P}_{0}: & \int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t \\ \mathbf{P}_{1}: & \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x . \text { In particular, } \int_{a}^{a} f(x) d x=0 \\ \mathbf{P}_{2}: & \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\end{array} $

\[ \begin{aligned} \mathbf{P}_3: & \quad \int_a^b f(x) \,dx = \int_a^b f(a + b - x) \,dx \\ \mathbf{P}_4: & \quad \int_0^a f(x) \,dx = \int_0^a f(a - x) \,dx \end{aligned} \]

${{\mathbf{P}}_5}:\quad \int_0^{2a} f (x)dx = \int_0^a f (x)dx + \int_0^a f (2a - x)dx$

${{\mathbf{P}}_6}:\quad \int_0^{2a} f (x)dx = 2\int_0^a f (x)dx$, if $f(2a - x) = f(x)$ and $0$ if  $f(2a - x) =  - f(x)$

${{\mathbf{P}}_7}:\quad $ (i) $\int_{ - a}^a f (x)dx = 2\int_0^a f (x)dx$, if $f$ is an even function, i.e., if $f( - x) = f(x)$.

(ii) $\int_{ - a}^a f (x)dx = 0$, if $f$ is an odd function, i.e., if $f( - x) =  - f(x)$.


Conclusion

NCERT Solutions for Maths Exercise 7.10 in Class 12 Chapter 7 - Integrals offer a comprehensive exploration of the properties of definite integrals. With clear, step-by-step solutions provided by Vedantu, students can deepen their understanding of integral properties and enhance their problem-solving skills. This practice not only builds a solid foundation for tackling complex integrals but also boosts confidence for CBSE exams.


Class 12 Maths Chapter 7: Exercises Breakdown

S.No.

Chapter 7 - Integrals Exercises in PDF Format

1

Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs)

2

Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

4

Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs)

5

Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs)

6

Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

7

Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs)

8

Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers)

9

Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs)

10

Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions



CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 12 Maths Chapter 7 Integrals Exercise 7.10 - 2025-26

1. Where can students find accurate and step-by-step NCERT Solutions for Class 12 Maths Chapter 7 (Integrals)?

Students can find reliable and easy-to-understand NCERT Solutions for Class 12 Maths Chapter 7, Integrals, on Vedantu's website. These solutions are prepared by subject matter experts, are fully updated for the 2025-26 CBSE syllabus, and cover every question from all exercises with a clear, methodical approach.

2. Which key topics are covered in the NCERT Solutions for Chapter 7, Integrals?

The NCERT Solutions for Integrals cover all essential topics as per the official CBSE curriculum. The main areas include:

  • Integration as an inverse process of differentiation.
  • Different methods of integration, such as substitution, using partial fractions, and integration by parts.
  • The Fundamental Theorem of Calculus.
  • Evaluation of definite integrals.
  • Key properties of definite integrals and their applications in solving problems.

3. Are the solutions for the Miscellaneous Exercise of Chapter 7 Integrals also available?

Yes, our NCERT Solutions for Class 12 Maths Chapter 7 provide comprehensive, step-by-step solutions for all questions in the Miscellaneous Exercise. These problems are often of a higher conceptual level and are extremely important for thorough preparation for the board examinations.

4. How do these NCERT solutions for Integrals help in preparing for the CBSE Class 12 board exams?

These solutions are specifically designed to align with the CBSE marking scheme and question patterns. By practising with our step-by-step methods, you learn the correct way to structure your answers to secure full marks. It clarifies complex concepts, improves problem-solving speed, and builds confidence in handling all types of integration questions asked in the exam.

5. Why is it crucial to follow the step-by-step method provided in the NCERT Solutions when solving integration problems?

Following a step-by-step method is vital in integration because it ensures logical clarity and minimises errors. For complex problems involving multiple rules, a structured approach helps apply the correct theorems and properties in the right sequence. This is essential for arriving at the correct answer and for presenting the solution in a way that fetches full marks from examiners who follow the CBSE guidelines.

6. What are some common mistakes students make in Chapter 7, and how do these solutions help in preventing them?

Common errors in Integrals include forgetting the constant of integration `+C` in indefinite integrals, applying incorrect limits for definite integrals, and making mistakes in trigonometric identities or algebraic simplification. Our NCERT solutions address these by providing clear, justified steps. This helps you understand the reasoning behind each step, making you more cautious and helping you avoid these frequent mistakes.

7. How do the properties of definite integrals, as explained in solutions for exercises like 7.10, simplify complex problems?

The properties of definite integrals are powerful tools for simplification. For instance, a property like ∫₀ᵃ f(x)dx = ∫₀ᵃ f(a-x)dx can instantly transform a complicated integral into a much simpler or even a standard form, avoiding lengthy calculations. Our solutions demonstrate the practical application of each property, teaching you how to identify which property to use for a given problem to solve it efficiently.