Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 12 Maths Chapter Chapter 4 Determinants

ffImage
banner

How To Solve Exercise 4.5 Class 12 Maths NCERT Solutions For Better Exam Readiness

NCERT Solutions For Chapter 4 Maths Ex 4.5 Class 12 focuses on the concept of determinants. This exercise is essential as it delves into the properties and applications of determinants, which are crucial for solving systems of linear equations. Understanding these properties helps in simplifying complex problems and finding solutions efficiently.

toc-symbolTable of Content
toggle-arrow


Students should focus on mastering the properties of determinants and their various applications. Class 12 Maths NCERT Solutions for Chapter 4 Determinants Exercise 4.5 provides a strong foundation for higher-level mathematics and practical problem-solving skills. Practising these problems will enhance analytical abilities and prepare students for exams, as emphasized by Vedantu.


Glance on NCERT Solutions Maths Chapter 4 Exercise 4.5 Class 12 | Vedantu

  • This chapter explains about Properties of Determinants, Cofactors and Minors, Application in Solving Linear equations, Area of Triangles Using Determinants.

  • Determinant is defined as the numerical value of the square matrix. If A is a square matrix i.e A = [aij] of order n, then the determinant of this matrix is denoted by det A or |A|.

  • The adjoint of a square matrix ‘A’ is defined as the transpose of the matrix obtained by co-factors of each element of a determinant corresponding to that given matrix. It is denoted by adj(A).

  • Hence the adjoint of a matrix A = [aij] n×n is a matrix [Aji] n×n, where Aji is a cofactor of element aji.

  • There are sixteen questions in Class 12th Maths Chapter 4 Exercise 4.5 Determinants which are fully solved by experts at Vedantu.


Formulas Used in Class 12 Chapter 4 Exercise 4.5 

  • A(adj A) = (adj A)A = |A|In

  • |adj A| = |A|n-1

  • adj (AT) = (adj A)T

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

How To Solve Exercise 4.5 Class 12 Maths NCERT Solutions For Better Exam Readiness

1. Examine the consistency of the system of equations. 

$x + 2y = 2$

$2x + 3y = 3$

Ans: The given system of equations is:

$x + 2y = 2$

$2x + 3y = 3$

The given system of equations is:

$\begin{array}{l} x+2y=2 \\ 2x+3y=3 \end{array}$

The given system of equations can be written in the form of $A X=B$, where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], X=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Now, $|A|=1(3)-2(2)=3-4=-1 \neq 0$

$\therefore A$ is non-singular. Therefore, $A^{-1}$ exists.

Hence, the given system of equations is consistent.

 

2. Examine the consistency of the system of equations. 

$2x - y = 5$

$x + y = 4$

Ans: The given system of equations is:

$\begin{array}{l} 2 x-y=5 \\ x+y=4 \end{array}$

The given system of equation can be written in the form of $A X=B$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 4\end{array}\right]$ $|A|=2(1)-(-1)(1)=2+1=3 \neq 0$

$\therefore A$ is non-singular. Therefore, $A^{-1}$ exists.

Hence, the given system of equations is consistent.

 

3. Examine the consistency of the system of equations. 

$x + 3y = 5$

$2x + 6y = 8$

Ans: The given system of equations is:

$\begin{array}{l} x+3 y=5 \\ 2 x+6 y=8 \end{array}$

The given system of equation can be written in the form of $A X=B$,

where $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 8\end{array}\right]$

Now, $|A|=1(6)-3(2)=6-6=0$

$\therefore A$ is a singular matrix. $(\operatorname{ad} j A)=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$

$(a d j A) B=\left[\begin{array}{cc} 6 & -3 \\ -2 & 1 \end{array}\right]\left[\begin{array}{l} 5 \\ 8 \end{array}\right]=\left[\begin{array}{l} 30-24 \\ -10+8 \end{array}\right]=\left[\begin{array}{c} 6 \\ -2 \end{array}\right] \neq 0$

Thus, the solution of the given system of equations does not exists. Hence, the given system of equations is inconsistent.

 

4. Examine the consistency 

$x + y + z = 1$

$2x + 3y + 2z = 2$

$ax + ay + 2az = 4$

Ans: The given system of equations is:

$x + y + z = 1$

$2x + 3y + 2z = 2$

$ax + ay + 2az = 4$

The system of equation can be written in the form of $AX = B$, 

where $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$

Now, $|A|=1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a)$

$=4 a-2 a-a=4 a-3 a=a \neq 0$

$\therefore A$ is a non-singular matrix. Therefore, $A^{-1}$ exists. Hence, the given system of equation is consistent.

 

5. Examine the consistency of the system of equations.

 $3x - y - 2z = 2$

$2y - z =  - 1$

$3x - 5y = 3$

Ans: The given system of equation is:

$3x - y - 2z = 2$

$2y - z =  - 1$

$3x - 5y = 3$

This system of equations can be written in the form of $AX = B$, 

where $A=\left[\begin{array}{ccc}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$

Now, $|A|=3(-5)-0+3(1+4)=-15+15=0$

$\therefore A$ is a singular matrix.

Now $(\operatorname{adj} A)=\left[\begin{array}{ccc}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$

$\therefore(a d j A) B=\left[\begin{array}{ccc} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{array}\right]\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right]$

$=\left[\begin{array}{c} -10-10+15 \\ -6-6+9 \\ -12-12+18 \end{array}\right]=\left[\begin{array}{l} -5 \\ -3 \\ -6 \end{array}\right] \neq 0$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

 

6. Examine the consistency of the system of equations. 

$5x - y + 4z = 5$

$2x + 3y + 5z = 2$

$5x - 2y + 6z =  - 1$

Ans: The given system of equation is:

$5x - y + 4z = 5$

$2x + 3y + 5z = 2$

$5x - 2y + 6z =  - 1$

The system of equation can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 3 & -2 & 6\end{array}\right], X\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}5 \\ 2 \\ -1\end{array}\right]$

Now, $|A|=5(18+10)+1(12-25)+4(-4-15)$

$\begin{array}{l} =5(28)+1(-13)+4(-19) \\ =140-13-76 \\ =51 \neq 0 \end{array}$

$\therefore A$ is non-singular. Therefore, $A^{-1}$ exists. Hence, the given system of equations is consistent.

 

7.Solve the system of linear equations, using the matrix method.

$5x + 2y = 4$

$7x + 3y = 5$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$

Now $|A|=15-14-1 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists.

Now,

$\begin{array}{l} A^{-1}=\dfrac{1}{|\mathrm{~A}|}(\operatorname{adj} A) \\ \therefore A^{-1}=\left[\begin{array}{cc} 3 & -2 \\ -7 & 5 \end{array}\right] \\ \therefore X=A^{-1} B=\left[\begin{array}{cc} 3 & -2 \\ -7 & 5 \end{array}\right]\left[\begin{array}{l} 4 \\ 5 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 12-10 \\ -28+25 \end{array}\right]=\left[\begin{array}{c} 2 \\ -3 \end{array}\right] \end{array}$

Hence, $x=2$ and $y=-3$

 

8 Solve the system of linear equations, using the matrix method. 

$2x - y =  - 2$

$3x + 4y = 3$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$

Now, $|A|=8+3=11 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists.

$\begin{array}{l} A^{-1}=|A|^{1}(\operatorname{adj} A)=\dfrac{1}{11}\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right] \\ \therefore X=A^{-1} B=\dfrac{1}{11}\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right]\left[\begin{array}{c} -2 \\ 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \end{array}\right]=\dfrac{1}{11}\left[\begin{array}{c} -8+3 \\ 6+6 \end{array}\right]=\dfrac{1}{11}\left[\begin{array}{l} -5 \\ 12 \end{array}\right]=\left[\begin{array}{c} -\dfrac{5}{11} \\ \dfrac{12}{11} \end{array}\right] \end{array}$

Hence, $x=\dfrac{-5}{11}$ and $y=\dfrac{12}{11}$.

 

9. Solve the system of linear equations, using the matrix method. 

$4x - 3y = 3$

$3x - 5y = 7$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$

Now, $|A|=-20+9=-11 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists. 

Now, $A^{-1}=\dfrac{1}{\mid A}(a d i-A)=-\dfrac{1}{11}\left[\begin{array}{ll}-5 & 3 \\ -3 & 4\end{array}\right]=\dfrac{1}{11}\left[\begin{array}{cc}5 & -3 \\ 3 & -4\end{array}\right]$

$\therefore X=A^{-1} B=\dfrac{1}{11}\left[\begin{array}{ll} 5 & -3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{l} 3 \\ 7 \end{array}\right]$

$\left[\begin{array}{l} x \\ y  \end{array}\right]=\dfrac{1}{11}\left[\begin{array}{ll} 5 & -3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{l} 3 \\ 7 \end{array}\right]$ 

$\begin{aligned} =& \dfrac{1}{11}\left[\begin{array}{c} 15-21 \\ 9-28 \end{array}\right] \\ &=\dfrac{1}{11}\left[\begin{array}{c} -6 \\ -19 \end{array}\right] \\ =\left[\begin{array}{r} -\dfrac{6}{11} \\ -\dfrac{19}{11} \end{array}\right] \end{aligned}$ 

Hence, $x=\dfrac{-6}{11}$ and $y=\dfrac{-19}{11}$

 

10. Solve the system of linear equations, using the matrix method.

$5x + 2y = 3$

$3x + 2y = 5$

Ans: The system of equation is

$\begin{array}{l} 5 x+2 y=3 \\ 3 x+2 y=5 \end{array}$

Writing the above equation as $\mathrm{AX}=\mathrm{B}$

$\left[\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]$

Hence $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right] \&\; B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

Calculating |A|

$\begin{aligned} |\mathrm{A}| &=\left|\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right| \\ &=5(2)-3(2)=10-6=4 \end{aligned}$

Since $|\mathrm{A}| \neq 0$

The System of equation is consistent and has a unique solution

Now,

$\begin{array}{l} A X=B \\ X=A^{-1} B \end{array}$

Calculating $\mathrm{A}^{-1}$ 

$A^{-1}=\dfrac{1}{|A|} \operatorname{adj}(A)$

Interchange sign

$\operatorname{adj} A=\left[\begin{array}{cc}2 & -2 \\ -3 & 5\end{array}\right]$

Now,

$\begin{array}{l} \mathrm{A}^{-1}=\dfrac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A} \\ \mathrm{A}^{-1}=\dfrac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right] \end{array}$

Thus,

$X=A^{-1} B$

$\left[\begin{array}{l} x \\ y \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} 3 \\ 5 \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} 2(3)+(-2) 5 \\ -3(3)+5(5) \end{array}\right]$

$\left[\begin{array}{l} x \\ y \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} 6-10 \\ -9+25 \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} -4 \\ 16 \end{array}\right]$

$\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} -1 \\ 4 \end{array}\right]$ 

Hence, $x=-1 \;\&\; y=4$

 

11. Solve the system of linear equations, using the matrix method. 

$2x + y + z = 1$

$x - 2y - z = \dfrac{3}{2}$

$3y - 5z = 9$

Ans: The given system can be written as $A X=B$, where

$A=\left[\begin{array}{ccc} 2 & 1 & 1 \\ 2 & -4 & -2 \\ 0 & 3 & -5 \end{array}\right], X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 1 \\ 3 \\ 9 \end{array}\right]$

$\begin{array}{l}\left|\begin{array}{lll}2 & 1 & 1 \\ 2 & -4 & -2 \\ 0 & 3 & -5\end{array}\right| \\ = & 2(20+6)-1(-10-0)+1(6-0) \\ = & 52+10+6=68 \neq 0\end{array}$

Thus, $\mathrm{A}$ is non-singular, Therefore, its inverse exists.

Therefore, the given system is consistent and has a unique solution given by $X=$ $A^{-1} B$

Cofactors of $A$ are 

$\begin{array}{l} A_{11}=20+6=26 \\ A_{12}=-(-10+0)=10 \\ A_{13}=6+0=6 \\ A_{21}=-(-5-3)=8 \\ A_{22}=-10-0=-10 \\ A_{23}=-(6-0)=-6 \\ A_{31}=(-2+4)=2 \\ A_{32}=-(-4-2)=6 \\ A_{33}=-8-2=-10 \end{array}$

$\operatorname{adj}(A)=\left[\begin{array}{ccc}26 & 10 & 6 \\ 8 & -10 & -6 \\ 2 & 6 & -10\end{array}\right]^{T}$

$=\left[\begin{array}{ccc}26 & 8 & 2 \\ 10 & -10 & 6 \\ 6 & -6 & -10\end{array}\right]$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{68}\left[\begin{array}{ccc}26 & 8 & 2 \\ 10 & -10 & 6 \\ 6 & -6 & -10\end{array}\right]$

Now, $X=A^{-1} B \Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

$=\frac{1}{68}\left[\begin{array}{ccc}26 & 8 & 2 \\ 10 & -10 & 6 \\ 6 & -6 & -10\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 9\end{array}\right]$

$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{68}\left[\begin{array}{c}26+24+18 \\ 10-30+54 \\ 6-18-90\end{array}\right]$

$=\frac{1}{68}\left[\begin{array}{c}68 \\ 34 \\ -102\end{array}\right]=\left[\begin{array}{c}1 \\ \frac{1}{2} \\ \frac{-3}{2}\end{array}\right]$

Hence, $x=1, y=\frac{1}{2}$ and $z=\frac{-3}{2}$

 

12. Solve a system of linear equations, using matrix method. 

$x - y + z = 4$

$2x + y - 3z = 0$

$x + y + z = 2$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$

Now, $|A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0$

Thus $A$ is non-singular. Therefore, its inverse exists. Now, $A_{11}=4, A_{12}=-5, A_{13}=1$

$\begin{array}{l} A_{21}=2, A_{22}=0, A_{23}=-2 \\ A_{31}=2, A_{32}=5, A_{33}=3 \\ \therefore A^{-1}=\dfrac{1}{|A|}(a d j A)=\dfrac{1}{10}\left[\begin{array}{ccc} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{array}\right] \end{array}$

$\begin{array}{l} \therefore X=A^{-1} B=\dfrac{1}{10}\left[\begin{array}{ccc} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{array}\right]\left[\begin{array}{l} 4 \\ 0 \\ 2 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]-\dfrac{1}{10}\left[\begin{array}{c} 16+0+4 \\ -20+0+10 \\ 4+0+6 \end{array}\right] \\ =\dfrac{1}{10}\left[\begin{array}{c} 20 \\ -10 \\ 10 \end{array}\right] \end{array}$

$=\left[\begin{array}{c} 2 \\ -1 \\ 1 \end{array}\right]$

Hence, $x=2,\; y=-1,\;\text{&}\; z=1$

 

13. Solve the system of linear equations, using the matrix method. $2x + 3y + 3z = 5$

$x - 2y + z =  - 4$

$3x - y - 2z = 3$

Ans: The given system of equation can be written in the form of $A X=B$ where

$\begin{array}{c} |A|=2(4+1)-3(2-3)+3(-1+6) \\ \quad=2(5)-3(-5)+3(5) \\ =10+15+15=40 \neq 0 \end{array}$

Thus, $A$ is non-singular. Therefore, its inverse exists. Now.

$\begin{array}{l} A_{11}=5, A_{2}=5, A_{13}=5 \\ A_{21}=3, A_{22}=-13, A_{23}-11 \\ A_{34}=9, A_{12}=1, A_{35}=-7 \\ \therefore A^{-1}=\dfrac{1}{|A|}(a d j A)=\dfrac{1}{40}\left[\begin{array}{ccc} 5 & 3 & 9 \\5 & -13 & 1 \\ 5 & 11 & -7 \end{array}\right] \end{array}$

$\begin{array}{l} \therefore X=A^{-1} B=\dfrac{1}{40}\left[\begin{array}{ccc} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{array}\right]\left[\begin{array}{c} 5 \\ -4 \\ 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} y \\ z \end{array}\right]=\dfrac{1}{40}\left[\begin{array}{c} 25-12+27 \\ 25+52+3 \\ 25-44-21 \end{array}\right] \end{array}$

$=\dfrac{1}{40}\left[\begin{array}{c} 40 \\ 80 \\ -40 \end{array}\right]$

$=\left[\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right]$

Hence, $x=1, y=2$ and $z=-1$ 

 

14. Solve the system of linear equations, using the matrix method.

$x - y + 2z = 7$

$3x + 4y - 5z =  - 5$

$2x - y + 3z = 12$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$

Now,

$|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists. Now, $A_{11}=7, A_{12}=-19, A_{3}=11$

$\begin{array}{l} A_{21}=1, A_{22}=-1, A_{23}=-1 \\ A_{31}=-3, A_{12}=11, A_{35}=7 \end{array}$

$\therefore A^{-1}=\left.\left.\right|_{A}\right|^{1}(\operatorname{adj} A)=\dfrac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right]$

$\therefore X=A^{-1} B=\dfrac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right]\left[\begin{array}{c} 7 \\ -5 \\ 12 \end{array}\right]$ 

$\Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} 49-5-36 \\ -133+5+132 \\ -77+5+84 \end{array}\right]$

$=\dfrac{1}{4}\left[\begin{array}{c} 8 \\ 4 \\ 12 \end{array}\right]=\left[\begin{array}{l} 2 \\ 1 \\ 3 \end{array}\right]$

Hence, $x=2, y=1$ and $z=3$.

 

15. If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find $A^{-1}$ Using $A^{-1}$ solve the system of equations $2 x-3 y+5 z=11$

$3 x+2 y-4 z=-5$ $x+y-2 z=-3$

Ans: $A=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right]$

$\therefore A \mid=2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1 \neq 0$

Now, $A_{11}=0, A_{2}=2, A_{3}=1$

$\begin{array}{l} A_{31}=-1, A_{22}=-9, A_{23}=-5 \\ A_{31}=2, A_{32}=23, A_{33}=13 \\ \therefore A^{-1}=\dfrac{1}{|A|}(\operatorname{adj} A)=-\left[\begin{array}{lll} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right]=\left[\begin{array}{ccc} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{array}\right] \end{array}$

Now, the given system of equations can be written in the form of $A X=B$,

where $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}11 \\ -5 \\ -3\end{array}\right]$

The solution of the system of equations is given by $X=A^{-1} B\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]\left[\begin{array}{l}11 \\ -5 \\ -3\end{array}\right]$ Using (1)

$=\left[\begin{array}{c} 0-5+6 \\ -22-45+69 \\ -11-25+39 \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]$

Hence $ x=1,\; y=2$, and $z=3$

 

16. The cost of $4{\text{Kg}}$ onion, $3\;{\text{kg}}$ wheat and $2\;{\text{kg}}$ rice is ${\text{Rs}}60$. The cost of $2\;{\text{kg}}$ onion, $4\;{\text{kg}}$ wheat and 6Kg rice is Rs 90. The cost of $6\;{\text{kg}}$ onion $2\;{\text{kg}}$ wheat and $3\;{\text{kg}}$ rice is Rs 70 .

Find cost of each item per kg by matrix method

Ans: Let the cost of onions, wheat and rice per ${\text{kg}}$ be Rs. X and Rs. Z respectively.

Then, the given situation can be represented by a system of equations as:

$4x + 3y + 2z = 60$

$2x + 4y + 6z = 90$

$6x + 2y + 3z - 70$

This system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right], X\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right]$

$|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$

Now,

$\begin{array}{l} A_{11}=0, A_{2}=30, A_{13}=-20 \\ A_{21}=-5, A_{22}=0, A_{23}=10 \\ A_{31}=10, A_{32}=-20, A_{33}=10 \\ \therefore \operatorname{adj} A=\left[\begin{array}{ccc} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{array}\right] \\ \therefore A^{-1}=\left.A\right|^{1} \operatorname{adj} A=\dfrac{1}{50}\left[\begin{array}{ccc} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{array}\right] \end{array}$

Now,

$\begin{array}{l} X=A^{-1} B \\ \Rightarrow X=\dfrac{1}{50}\left[\begin{array}{ccc} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{array}\right]\left[\begin{array}{l} 60 \\ 90 \\ 70 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\dfrac{1}{50}\left[\begin{array}{c} 0-450+700 \\ 1800+0-1400 \\ -1200+900+700 \end{array}\right] \\ =\dfrac{1}{50}\left[\begin{array}{l} 250 \\ 400 \\ 400 \end{array}\right] \end{array}$ 

$=\left[\begin{array}{l}5 \\ 8 \\ 8\end{array}\right]$

$\therefore x=5, y=8$, and $z=8$

Hence, the cost of onions is $5 R s$ per $\mathrm{kg}$, the cost of wheat is $8 \mathrm{Rs}$ per $\mathrm{kg}$, and the cost of rice is $8 \mathrm{Rs}$ per $\mathrm{kg}$.



Conclusion

Class 12 Maths Ex 4.5 Chapter 4 focuses on the concept of determinants and their properties. This exercise is essential for learning how to solve systems of linear equations using Cramer's Rule, which helps in simplifying complex problems. Students should concentrate on calculating determinants for 2x2 and 3x3 matrices and understanding cofactor expansions. Additionally, applying determinants to find the area of triangles provides practical applications that reinforce theoretical knowledge. Practicing these problems enhances problem-solving skills and prepares students effectively for exams. Mastering these concepts is crucial for further studies in mathematics and related fields, as emphasized by Vedantu.


Class 12 Maths Chapter 4: Exercises Breakdown

S.No.

Chapter 4 - Determinants Exercises in PDF Format

1

Class 12 Maths Chapter 4 Exercise 4.1 - 8 Questions & Solutions (3 Short Answers, 5 Long Answers)

2

Class 12 Maths Chapter 4 Exercise 4.2 - 10 Questions & Solutions (4 Short Answers, 10 Long Answers)

3

Class 12 Maths Chapter 4 Exercise 4.3 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

4

Class 12 Maths Chapter 4 Exercise 4.4 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)



CBSE Class 12 Maths Chapter 4 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 12 Maths Chapter Chapter 4 Determinants

1. How do I use the NCERT solutions to solve a system of linear equations using the matrix method?

To solve a system of equations using the matrix method for Class 12 Maths, follow these steps as per the 2025-26 CBSE syllabus:

  • First, write the equations in matrix form as AX = B.
  • Calculate the determinant of the coefficient matrix, |A|.
  • If |A| is not zero, find the adjoint of A (adj A) to compute the inverse, A⁻¹ = (1/|A|) × (adj A).
  • Finally, find the solution using the formula X = A⁻¹B.

2. What is the correct procedure in the NCERT solutions if the determinant |A| is zero?

If you find that the determinant |A| = 0, the system either has no solution or infinitely many solutions. To determine which, you must calculate (adj A)B:

  • If (adj A)B is a non-zero matrix, the system is inconsistent and has no solution.
  • If (adj A)B is a zero matrix, the system is consistent and has infinitely many solutions.

3. Why is it important to check if a matrix is singular or non-singular before finding a solution?

Checking if a matrix is singular (|A| = 0) or non-singular (|A| ≠ 0) is a crucial first step. A unique solution to a system of equations only exists if the inverse of the matrix (A⁻¹) can be found. The inverse only exists for a non-singular matrix. This check tells you whether a unique solution is possible or if you need to test for no solution or infinite solutions.

4. How are properties of determinants used to make solving questions easier in Chapter 4?

Using properties of determinants is a smart strategy to simplify complex problems. By applying row or column operations (like R₁ → R₁ + R₂), you can introduce zeros into the determinant. This makes the expansion calculation much faster and reduces the chances of making a mistake, which is a key technique shown in many NCERT solutions.

5. What are the most common calculation mistakes to avoid when solving Determinants problems?

Students often make small mistakes that can lead to wrong answers. Be careful with:

  • Sign errors: Forgetting the sign pattern (+, -, +) when finding cofactors or expanding the determinant.
  • Adjoint calculation: Incorrectly finding the transpose of the cofactor matrix to get the adjoint.
  • Arithmetic mistakes: Simple errors in multiplication or addition, especially with negative numbers.

6. How do the NCERT solutions use determinants to find the area of a triangle?

To find the area of a triangle with vertices (x₁, y₁), (x₂, y₂), and (x₃, y₃), the solutions use the formula: Area = ½ |x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)|. This is the determinant form. A key point is to always take the absolute value of the result, as area cannot be negative.

7. What is the best way to approach the Miscellaneous Exercise solutions for Chapter 4?

The Miscellaneous Exercise contains questions that test your combined understanding of all the concepts in the chapter, like properties, inverse, and solving systems. It is best to attempt these questions after you have thoroughly practised all the previous exercises (4.1 to 4.5). They are excellent for preparing for the difficulty level of board exams.

8. What is the first step when solving a word problem using the matrix method in this chapter?

The first and most important step is to carefully read the problem and define your variables (like x, y, and z). Then, translate the given information into a system of linear equations. Once you have the equations correctly set up, you can write them in the standard matrix form AX = B and solve from there.

9. Are the NCERT Solutions for Class 12 Maths Chapter 4 available for every exercise on Vedantu?

Yes, you can find detailed, step-by-step NCERT Solutions for every single question in Chapter 4. This includes solutions for Exercise 4.1, 4.2, 4.3, 4.4, 4.5, and the final Miscellaneous Exercise, all prepared according to the latest 2025-26 CBSE guidelines.