Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

ffImage
banner

Class 12 Maths NCERT Solutions: Chapter 4 Determinants Exercise 4.5 - FREE PDF Download

NCERT Solutions For Chapter 4 Maths Ex 4.5 Class 12 focuses on the concept of determinants. This exercise is essential as it delves into the properties and applications of determinants, which are crucial for solving systems of linear equations. Understanding these properties helps in simplifying complex problems and finding solutions efficiently.

toc-symbolTable of Content
toggle-arrow


Students should focus on mastering the properties of determinants and their various applications. Class 12 Maths NCERT Solutions for Chapter 4 Determinants Exercise 4.5 provides a strong foundation for higher-level mathematics and practical problem-solving skills. Practising these problems will enhance analytical abilities and prepare students for exams, as emphasized by Vedantu.


Glance on NCERT Solutions Maths Chapter 4 Exercise 4.5 Class 12 | Vedantu

  • This chapter explains about Properties of Determinants, Cofactors and Minors, Application in Solving Linear equations, Area of Triangles Using Determinants.

  • Determinant is defined as the numerical value of the square matrix. If A is a square matrix i.e A = [aij] of order n, then the determinant of this matrix is denoted by det A or |A|.

  • The adjoint of a square matrix ‘A’ is defined as the transpose of the matrix obtained by co-factors of each element of a determinant corresponding to that given matrix. It is denoted by adj(A).

  • Hence the adjoint of a matrix A = [aij] n×n is a matrix [Aji] n×n, where Aji is a cofactor of element aji.

  • There are sixteen questions in Class 12th Maths Chapter 4 Exercise 4.5 Determinants which are fully solved by experts at Vedantu.


Formulas Used in Class 12 Chapter 4 Exercise 4.5 

  • A(adj A) = (adj A)A = |A|In

  • |adj A| = |A|n-1

  • adj (AT) = (adj A)T

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 4 Determinants Exercise 4.5

1. Examine the consistency of the system of equations. 

$x + 2y = 2$

$2x + 3y = 3$

Ans: The given system of equations is:

$x + 2y = 2$

$2x + 3y = 3$

The given system of equations is:

$\begin{array}{l} x+2y=2 \\ 2x+3y=3 \end{array}$

The given system of equations can be written in the form of $A X=B$, where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], X=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Now, $|A|=1(3)-2(2)=3-4=-1 \neq 0$

$\therefore A$ is non-singular. Therefore, $A^{-1}$ exists.

Hence, the given system of equations is consistent.

 

2. Examine the consistency of the system of equations. 

$2x - y = 5$

$x + y = 4$

Ans: The given system of equations is:

$\begin{array}{l} 2 x-y=5 \\ x+y=4 \end{array}$

The given system of equation can be written in the form of $A X=B$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 4\end{array}\right]$ $|A|=2(1)-(-1)(1)=2+1=3 \neq 0$

$\therefore A$ is non-singular. Therefore, $A^{-1}$ exists.

Hence, the given system of equations is consistent.

 

3. Examine the consistency of the system of equations. 

$x + 3y = 5$

$2x + 6y = 8$

Ans: The given system of equations is:

$\begin{array}{l} x+3 y=5 \\ 2 x+6 y=8 \end{array}$

The given system of equation can be written in the form of $A X=B$,

where $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 8\end{array}\right]$

Now, $|A|=1(6)-3(2)=6-6=0$

$\therefore A$ is a singular matrix. $(\operatorname{ad} j A)=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$

$(a d j A) B=\left[\begin{array}{cc} 6 & -3 \\ -2 & 1 \end{array}\right]\left[\begin{array}{l} 5 \\ 8 \end{array}\right]=\left[\begin{array}{l} 30-24 \\ -10+8 \end{array}\right]=\left[\begin{array}{c} 6 \\ -2 \end{array}\right] \neq 0$

Thus, the solution of the given system of equations does not exists. Hence, the given system of equations is inconsistent.

 

4. Examine the consistency 

$x + y + z = 1$

$2x + 3y + 2z = 2$

$ax + ay + 2az = 4$

Ans: The given system of equations is:

$x + y + z = 1$

$2x + 3y + 2z = 2$

$ax + ay + 2az = 4$

The system of equation can be written in the form of $AX = B$, 

where $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$

Now, $|A|=1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a)$

$=4 a-2 a-a=4 a-3 a=a \neq 0$

$\therefore A$ is a non-singular matrix. Therefore, $A^{-1}$ exists. Hence, the given system of equation is consistent.

 

5. Examine the consistency of the system of equations.

 $3x - y - 2z = 2$

$2y - z =  - 1$

$3x - 5y = 3$

Ans: The given system of equation is:

$3x - y - 2z = 2$

$2y - z =  - 1$

$3x - 5y = 3$

This system of equations can be written in the form of $AX = B$, 

where $A=\left[\begin{array}{ccc}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$

Now, $|A|=3(-5)-0+3(1+4)=-15+15=0$

$\therefore A$ is a singular matrix.

Now $(\operatorname{adj} A)=\left[\begin{array}{ccc}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$

$\therefore(a d j A) B=\left[\begin{array}{ccc} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{array}\right]\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right]$

$=\left[\begin{array}{c} -10-10+15 \\ -6-6+9 \\ -12-12+18 \end{array}\right]=\left[\begin{array}{l} -5 \\ -3 \\ -6 \end{array}\right] \neq 0$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

 

6. Examine the consistency of the system of equations. 

$5x - y + 4z = 5$

$2x + 3y + 5z = 2$

$5x - 2y + 6z =  - 1$

Ans: The given system of equation is:

$5x - y + 4z = 5$

$2x + 3y + 5z = 2$

$5x - 2y + 6z =  - 1$

The system of equation can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 3 & -2 & 6\end{array}\right], X\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}5 \\ 2 \\ -1\end{array}\right]$

Now, $|A|=5(18+10)+1(12-25)+4(-4-15)$

$\begin{array}{l} =5(28)+1(-13)+4(-19) \\ =140-13-76 \\ =51 \neq 0 \end{array}$

$\therefore A$ is non-singular. Therefore, $A^{-1}$ exists. Hence, the given system of equations is consistent.

 

7.Solve the system of linear equations, using the matrix method.

$5x + 2y = 4$

$7x + 3y = 5$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$

Now $|A|=15-14-1 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists.

Now,

$\begin{array}{l} A^{-1}=\dfrac{1}{|\mathrm{~A}|}(\operatorname{adj} A) \\ \therefore A^{-1}=\left[\begin{array}{cc} 3 & -2 \\ -7 & 5 \end{array}\right] \\ \therefore X=A^{-1} B=\left[\begin{array}{cc} 3 & -2 \\ -7 & 5 \end{array}\right]\left[\begin{array}{l} 4 \\ 5 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 12-10 \\ -28+25 \end{array}\right]=\left[\begin{array}{c} 2 \\ -3 \end{array}\right] \end{array}$

Hence, $x=2$ and $y=-3$

 

8 Solve the system of linear equations, using the matrix method. 

$2x - y =  - 2$

$3x + 4y = 3$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$

Now, $|A|=8+3=11 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists.

$\begin{array}{l} A^{-1}=|A|^{1}(\operatorname{adj} A)=\dfrac{1}{11}\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right] \\ \therefore X=A^{-1} B=\dfrac{1}{11}\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right]\left[\begin{array}{c} -2 \\ 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \end{array}\right]=\dfrac{1}{11}\left[\begin{array}{c} -8+3 \\ 6+6 \end{array}\right]=\dfrac{1}{11}\left[\begin{array}{l} -5 \\ 12 \end{array}\right]=\left[\begin{array}{c} -\dfrac{5}{11} \\ \dfrac{12}{11} \end{array}\right] \end{array}$

Hence, $x=\dfrac{-5}{11}$ and $y=\dfrac{12}{11}$.

 

9. Solve the system of linear equations, using the matrix method. 

$4x - 3y = 3$

$3x - 5y = 7$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$

Now, $|A|=-20+9=-11 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists. 

Now, $A^{-1}=\dfrac{1}{\mid A}(a d i-A)=-\dfrac{1}{11}\left[\begin{array}{ll}-5 & 3 \\ -3 & 4\end{array}\right]=\dfrac{1}{11}\left[\begin{array}{cc}5 & -3 \\ 3 & -4\end{array}\right]$

$\therefore X=A^{-1} B=\dfrac{1}{11}\left[\begin{array}{ll} 5 & -3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{l} 3 \\ 7 \end{array}\right]$

$\left[\begin{array}{l} x \\ y  \end{array}\right]=\dfrac{1}{11}\left[\begin{array}{ll} 5 & -3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{l} 3 \\ 7 \end{array}\right]$ 

$\begin{aligned} =& \dfrac{1}{11}\left[\begin{array}{c} 15-21 \\ 9-28 \end{array}\right] \\ &=\dfrac{1}{11}\left[\begin{array}{c} -6 \\ -19 \end{array}\right] \\ =\left[\begin{array}{r} -\dfrac{6}{11} \\ -\dfrac{19}{11} \end{array}\right] \end{aligned}$ 

Hence, $x=\dfrac{-6}{11}$ and $y=\dfrac{-19}{11}$

 

10. Solve the system of linear equations, using the matrix method.

$5x + 2y = 3$

$3x + 2y = 5$

Ans: The system of equation is

$\begin{array}{l} 5 x+2 y=3 \\ 3 x+2 y=5 \end{array}$

Writing the above equation as $\mathrm{AX}=\mathrm{B}$

$\left[\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]$

Hence $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right] \&\; B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

Calculating |A|

$\begin{aligned} |\mathrm{A}| &=\left|\begin{array}{ll} 5 & 2 \\ 3 & 2 \end{array}\right| \\ &=5(2)-3(2)=10-6=4 \end{aligned}$

Since $|\mathrm{A}| \neq 0$

The System of equation is consistent and has a unique solution

Now,

$\begin{array}{l} A X=B \\ X=A^{-1} B \end{array}$

Calculating $\mathrm{A}^{-1}$ 

$A^{-1}=\dfrac{1}{|A|} \operatorname{adj}(A)$

Interchange sign

$\operatorname{adj} A=\left[\begin{array}{cc}2 & -2 \\ -3 & 5\end{array}\right]$

Now,

$\begin{array}{l} \mathrm{A}^{-1}=\dfrac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A} \\ \mathrm{A}^{-1}=\dfrac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right] \end{array}$

Thus,

$X=A^{-1} B$

$\left[\begin{array}{l} x \\ y \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{cc} 2 & -2 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} 3 \\ 5 \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} 2(3)+(-2) 5 \\ -3(3)+5(5) \end{array}\right]$

$\left[\begin{array}{l} x \\ y \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} 6-10 \\ -9+25 \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} -4 \\ 16 \end{array}\right]$

$\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} -1 \\ 4 \end{array}\right]$ 

Hence, $x=-1 \;\&\; y=4$

 

11. Solve the system of linear equations, using the matrix method. 

$2x + y + z = 1$

$x - 2y - z = \dfrac{3}{2}$

$3y - 5z = 9$

Ans: The given system can be written as $A X=B$, where

$A=\left[\begin{array}{ccc} 2 & 1 & 1 \\ 2 & -4 & -2 \\ 0 & 3 & -5 \end{array}\right], X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 1 \\ 3 \\ 9 \end{array}\right]$

$\begin{array}{l}\left|\begin{array}{lll}2 & 1 & 1 \\ 2 & -4 & -2 \\ 0 & 3 & -5\end{array}\right| \\ = & 2(20+6)-1(-10-0)+1(6-0) \\ = & 52+10+6=68 \neq 0\end{array}$

Thus, $\mathrm{A}$ is non-singular, Therefore, its inverse exists.

Therefore, the given system is consistent and has a unique solution given by $X=$ $A^{-1} B$

Cofactors of $A$ are 

$\begin{array}{l} A_{11}=20+6=26 \\ A_{12}=-(-10+0)=10 \\ A_{13}=6+0=6 \\ A_{21}=-(-5-3)=8 \\ A_{22}=-10-0=-10 \\ A_{23}=-(6-0)=-6 \\ A_{31}=(-2+4)=2 \\ A_{32}=-(-4-2)=6 \\ A_{33}=-8-2=-10 \end{array}$

$\operatorname{adj}(A)=\left[\begin{array}{ccc}26 & 10 & 6 \\ 8 & -10 & -6 \\ 2 & 6 & -10\end{array}\right]^{T}$

$=\left[\begin{array}{ccc}26 & 8 & 2 \\ 10 & -10 & 6 \\ 6 & -6 & -10\end{array}\right]$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{68}\left[\begin{array}{ccc}26 & 8 & 2 \\ 10 & -10 & 6 \\ 6 & -6 & -10\end{array}\right]$

Now, $X=A^{-1} B \Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

$=\frac{1}{68}\left[\begin{array}{ccc}26 & 8 & 2 \\ 10 & -10 & 6 \\ 6 & -6 & -10\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 9\end{array}\right]$

$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{68}\left[\begin{array}{c}26+24+18 \\ 10-30+54 \\ 6-18-90\end{array}\right]$

$=\frac{1}{68}\left[\begin{array}{c}68 \\ 34 \\ -102\end{array}\right]=\left[\begin{array}{c}1 \\ \frac{1}{2} \\ \frac{-3}{2}\end{array}\right]$

Hence, $x=1, y=\frac{1}{2}$ and $z=\frac{-3}{2}$

 

12. Solve a system of linear equations, using matrix method. 

$x - y + z = 4$

$2x + y - 3z = 0$

$x + y + z = 2$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$

Now, $|A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0$

Thus $A$ is non-singular. Therefore, its inverse exists. Now, $A_{11}=4, A_{12}=-5, A_{13}=1$

$\begin{array}{l} A_{21}=2, A_{22}=0, A_{23}=-2 \\ A_{31}=2, A_{32}=5, A_{33}=3 \\ \therefore A^{-1}=\dfrac{1}{|A|}(a d j A)=\dfrac{1}{10}\left[\begin{array}{ccc} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{array}\right] \end{array}$

$\begin{array}{l} \therefore X=A^{-1} B=\dfrac{1}{10}\left[\begin{array}{ccc} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{array}\right]\left[\begin{array}{l} 4 \\ 0 \\ 2 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]-\dfrac{1}{10}\left[\begin{array}{c} 16+0+4 \\ -20+0+10 \\ 4+0+6 \end{array}\right] \\ =\dfrac{1}{10}\left[\begin{array}{c} 20 \\ -10 \\ 10 \end{array}\right] \end{array}$

$=\left[\begin{array}{c} 2 \\ -1 \\ 1 \end{array}\right]$

Hence, $x=2,\; y=-1,\;\text{&}\; z=1$

 

13. Solve the system of linear equations, using the matrix method. $2x + 3y + 3z = 5$

$x - 2y + z =  - 4$

$3x - y - 2z = 3$

Ans: The given system of equation can be written in the form of $A X=B$ where

$\begin{array}{c} |A|=2(4+1)-3(2-3)+3(-1+6) \\ \quad=2(5)-3(-5)+3(5) \\ =10+15+15=40 \neq 0 \end{array}$

Thus, $A$ is non-singular. Therefore, its inverse exists. Now.

$\begin{array}{l} A_{11}=5, A_{2}=5, A_{13}=5 \\ A_{21}=3, A_{22}=-13, A_{23}-11 \\ A_{34}=9, A_{12}=1, A_{35}=-7 \\ \therefore A^{-1}=\dfrac{1}{|A|}(a d j A)=\dfrac{1}{40}\left[\begin{array}{ccc} 5 & 3 & 9 \\5 & -13 & 1 \\ 5 & 11 & -7 \end{array}\right] \end{array}$

$\begin{array}{l} \therefore X=A^{-1} B=\dfrac{1}{40}\left[\begin{array}{ccc} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{array}\right]\left[\begin{array}{c} 5 \\ -4 \\ 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} y \\ z \end{array}\right]=\dfrac{1}{40}\left[\begin{array}{c} 25-12+27 \\ 25+52+3 \\ 25-44-21 \end{array}\right] \end{array}$

$=\dfrac{1}{40}\left[\begin{array}{c} 40 \\ 80 \\ -40 \end{array}\right]$

$=\left[\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right]$

Hence, $x=1, y=2$ and $z=-1$ 

 

14. Solve the system of linear equations, using the matrix method.

$x - y + 2z = 7$

$3x + 4y - 5z =  - 5$

$2x - y + 3z = 12$

Ans: The given system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$

Now,

$|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists. Now, $A_{11}=7, A_{12}=-19, A_{3}=11$

$\begin{array}{l} A_{21}=1, A_{22}=-1, A_{23}=-1 \\ A_{31}=-3, A_{12}=11, A_{35}=7 \end{array}$

$\therefore A^{-1}=\left.\left.\right|_{A}\right|^{1}(\operatorname{adj} A)=\dfrac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right]$

$\therefore X=A^{-1} B=\dfrac{1}{4}\left[\begin{array}{ccc} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{array}\right]\left[\begin{array}{c} 7 \\ -5 \\ 12 \end{array}\right]$ 

$\Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c} 49-5-36 \\ -133+5+132 \\ -77+5+84 \end{array}\right]$

$=\dfrac{1}{4}\left[\begin{array}{c} 8 \\ 4 \\ 12 \end{array}\right]=\left[\begin{array}{l} 2 \\ 1 \\ 3 \end{array}\right]$

Hence, $x=2, y=1$ and $z=3$.

 

15. If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find $A^{-1}$ Using $A^{-1}$ solve the system of equations $2 x-3 y+5 z=11$

$3 x+2 y-4 z=-5$ $x+y-2 z=-3$

Ans: $A=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right]$

$\therefore A \mid=2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1 \neq 0$

Now, $A_{11}=0, A_{2}=2, A_{3}=1$

$\begin{array}{l} A_{31}=-1, A_{22}=-9, A_{23}=-5 \\ A_{31}=2, A_{32}=23, A_{33}=13 \\ \therefore A^{-1}=\dfrac{1}{|A|}(\operatorname{adj} A)=-\left[\begin{array}{lll} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right]=\left[\begin{array}{ccc} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{array}\right] \end{array}$

Now, the given system of equations can be written in the form of $A X=B$,

where $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}11 \\ -5 \\ -3\end{array}\right]$

The solution of the system of equations is given by $X=A^{-1} B\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]\left[\begin{array}{l}11 \\ -5 \\ -3\end{array}\right]$ Using (1)

$=\left[\begin{array}{c} 0-5+6 \\ -22-45+69 \\ -11-25+39 \end{array}\right]=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]$

Hence $ x=1,\; y=2$, and $z=3$

 

16. The cost of $4{\text{Kg}}$ onion, $3\;{\text{kg}}$ wheat and $2\;{\text{kg}}$ rice is ${\text{Rs}}60$. The cost of $2\;{\text{kg}}$ onion, $4\;{\text{kg}}$ wheat and 6Kg rice is Rs 90. The cost of $6\;{\text{kg}}$ onion $2\;{\text{kg}}$ wheat and $3\;{\text{kg}}$ rice is Rs 70 .

Find cost of each item per kg by matrix method

Ans: Let the cost of onions, wheat and rice per ${\text{kg}}$ be Rs. X and Rs. Z respectively.

Then, the given situation can be represented by a system of equations as:

$4x + 3y + 2z = 60$

$2x + 4y + 6z = 90$

$6x + 2y + 3z - 70$

This system of equations can be written in the form of $AX = B$,

where $A=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right], X\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right]$

$|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$

Now,

$\begin{array}{l} A_{11}=0, A_{2}=30, A_{13}=-20 \\ A_{21}=-5, A_{22}=0, A_{23}=10 \\ A_{31}=10, A_{32}=-20, A_{33}=10 \\ \therefore \operatorname{adj} A=\left[\begin{array}{ccc} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{array}\right] \\ \therefore A^{-1}=\left.A\right|^{1} \operatorname{adj} A=\dfrac{1}{50}\left[\begin{array}{ccc} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{array}\right] \end{array}$

Now,

$\begin{array}{l} X=A^{-1} B \\ \Rightarrow X=\dfrac{1}{50}\left[\begin{array}{ccc} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{array}\right]\left[\begin{array}{l} 60 \\ 90 \\ 70 \end{array}\right] \\ \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\dfrac{1}{50}\left[\begin{array}{c} 0-450+700 \\ 1800+0-1400 \\ -1200+900+700 \end{array}\right] \\ =\dfrac{1}{50}\left[\begin{array}{l} 250 \\ 400 \\ 400 \end{array}\right] \end{array}$ 

$=\left[\begin{array}{l}5 \\ 8 \\ 8\end{array}\right]$

$\therefore x=5, y=8$, and $z=8$

Hence, the cost of onions is $5 R s$ per $\mathrm{kg}$, the cost of wheat is $8 \mathrm{Rs}$ per $\mathrm{kg}$, and the cost of rice is $8 \mathrm{Rs}$ per $\mathrm{kg}$.



Conclusion

Class 12 Maths Ex 4.5 Chapter 4 focuses on the concept of determinants and their properties. This exercise is essential for learning how to solve systems of linear equations using Cramer's Rule, which helps in simplifying complex problems. Students should concentrate on calculating determinants for 2x2 and 3x3 matrices and understanding cofactor expansions. Additionally, applying determinants to find the area of triangles provides practical applications that reinforce theoretical knowledge. Practicing these problems enhances problem-solving skills and prepares students effectively for exams. Mastering these concepts is crucial for further studies in mathematics and related fields, as emphasized by Vedantu.


Class 12 Maths Chapter 4: Exercises Breakdown

S.No.

Chapter 4 - Determinants Exercises in PDF Format

1

Class 12 Maths Chapter 4 Exercise 4.1 - 8 Questions & Solutions (3 Short Answers, 5 Long Answers)

2

Class 12 Maths Chapter 4 Exercise 4.2 - 10 Questions & Solutions (4 Short Answers, 10 Long Answers)

3

Class 12 Maths Chapter 4 Exercise 4.3 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

4

Class 12 Maths Chapter 4 Exercise 4.4 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)



CBSE Class 12 Maths Chapter 4 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

1. What is the correct stepwise method to solve systems of linear equations using determinants as shown in NCERT Solutions for Class 12 Maths Chapter 4?

To solve a system of linear equations using determinants, express the equations in matrix form AX = B, find the determinant |A|, and then use Cramer's Rule to calculate each variable as the ratio of two determinants. Ensure all steps, including determinant expansion and substitution in the determinant, follow the CBSE 2025–26 methodology.

2. How do you determine if a system of equations is consistent using the NCERT Solutions for Class 12 Maths Chapter 4?

Check the determinant of the coefficient matrix |A|:

  • If |A| ≠ 0, the system is consistent and has a unique solution.
  • If |A| = 0, further check if the adjugate times the constants matrix yields the zero vector. If yes, infinite solutions exist; if not, the system is inconsistent.

3. What is the purpose of finding cofactors and minors in Exercise 4.5 of Class 12 Maths NCERT Solutions?

Cofactors and minors are used to expand determinants, construct the adjoint of a matrix, and find the inverse when needed. Mastery of these concepts is critical for solving matrix equations stepwise and for understanding determinant properties in CBSE exams.

4. Which properties of determinants should students master for accurate solutions in Chapter 4?

Important properties include:

  • Effect of row interchange, multiplication, or addition on the determinant's value
  • The multiplicative property: |AB| = |A| × |B|
  • Properties involving expansion through cofactors and minors
  • Sign patterns during expansion

5. How does Cramer’s Rule streamline the solution process in Exercise 4.5 of NCERT Class 12 Maths?

Cramer’s Rule provides a direct method by replacing each column of the coefficient matrix with the constants column and finding the ratio of determinants. It allows systematic and reliable solutions for systems with a unique answer, as required by CBSE 2025–26.

6. What common calculation errors should be avoided while attempting Exercise 4.5 solutions?

Typical mistakes include:

  • Errors in computing determinant values, especially sign errors
  • Incorrect application of cofactor signs
  • Misplacement of columns while using Cramer’s Rule
  • Not identifying when |A| = 0 and failing to check for dependency or inconsistency

7. Why is it important to understand the distinction between singular and non-singular matrices in NCERT Class 12 Maths Chapter 4?

A non-singular matrix (|A| ≠ 0) has an inverse and guarantees a unique solution to the system. A singular matrix (|A| = 0) indicates either no solution or infinitely many solutions, impacting how you interpret the results. This concept is fundamental for solving and analyzing systems of equations in Exercise 4.5.

8. How should students approach problems with parameter-dependent coefficients in determinants?

Calculate the determinant as a function of the parameter, find values for which |A| = 0, and then test for consistency or uniqueness of solutions. This approach aligns with CBSE's expectations for parametric problems in Class 12 Maths Chapter 4.

9. In what types of real-world scenarios can the methods from NCERT Solutions for Class 12 Maths Chapter 4 be applied?

Determinant-based solutions are applied in:

  • Engineering: Force analysis, circuit solutions
  • Economics: Market equilibrium calculation
  • Computer Graphics: Shape transformations
  • Geometry: Calculating area of triangles using coordinates

10. What should be the stepwise strategy if a solved system in Exercise 4.5 yields |A| = 0?

After finding |A| = 0:

  • Compute (adj A) × B.
  • If this result is the zero vector, the system has infinite solutions (dependent).
  • If not, declare the system inconsistent (no solution exists).

11. What are expert-recommended steps for mastering Exercise 4.5 solutions based on CBSE guidelines?

Experts suggest:

  • Practicing determinant calculations with sign rules
  • Carefully reviewing cofactor and minor definitions
  • Applying Cramer's Rule stepwise
  • Checking for consistency at each step
  • Solving extra problems on parametric and applied scenarios

12. How do the concepts in NCERT Solutions for Class 12 Chapter 4 Determinants help in later Maths chapters?

The skills gained in determinant calculation, cofactor expansion, and system solving form the foundation for vector algebra, 3D geometry, and calculus in later chapters of Class 12 Maths.

13. What approach is recommended for solving word problems in Exercise 4.5 using the matrix method?

Translate the problem into equations, write them in AX = B form, calculate the coefficient matrix determinant, and use Cramer's Rule or matrix inverse method for a complete, stepwise solution, always matching the NCERT format for the 2025–26 syllabus.

14. How can students build strong conceptual understanding to avoid misconceptions in determinants and matrix methods?

Focus on understanding the definition and properties of determinants, practice expansion using minors and cofactors, review multiple solution types (unique, infinite, none), and link each step to the official CBSE/NCERT method for clarity.

15. How many exercises and questions does NCERT Class 12 Maths Chapter 4 Determinants contain, and how should students practise for exams?

There are 68 questions across 6 main exercises and 19 miscellaneous questions in Chapter 4. Students should solve all types, review conceptual and applied problems, and ensure understanding matches the question patterns used in CBSE 2025–26 examinations.