Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 12 Limits and Derivatives - 2025-26

ffImage
banner

Class 11 Maths Miscellaneous Exercise Chapter 12 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 12 Miscellaneous Exercise, you’ll dive deep into the world of Limits and Derivatives—key ideas that start your journey into calculus. This chapter shows you how functions behave as values get closer to a point (limits) and how quickly those values change (derivatives).

toc-symbolTable of Content
toggle-arrow

Feeling stuck with tricky questions? Don’t worry! Vedantu’s step-by-step NCERT Solutions will help you understand these concepts clearly and boost your confidence, whether you find limits confusing or want to master derivatives for your exams. Download free PDF solutions to practice even if you’re offline. If you want to see the full Class 11 Maths Syllabus, check it out anytime on our syllabus page.


Working through these exercises will prepare you for more advanced maths ahead. With regular practice using the NCERT Solutions for Class 11 Maths, you can overcome doubts and get exam-ready, one problem at a time.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Class 11 Maths Chapter 12 Limits and Derivatives Miscellaneous Exercise

1. Find the derivative of the following functions from first principle:

(i) -x

(ii) $\mathbf{(-x)^{-1}}$

(iii) $\mathbf{\sin (x+1)}$

(iv) $\mathbf{\cos \left(x-\dfrac{\pi}{8}\right)}$

Ans: (i) Let $f(x)=-x$. Accordingly, $f(x+h)=-(x+h)$

By first principle, $f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{-(x+h)-(-x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{-x-h+x}{h}$

$=\lim _{n \rightarrow 0} \dfrac{-h}{h}$

$=\lim _{h \rightarrow 0}(-1)=-1$


(ii) Let $f(x)=(-x)^{-1}=\dfrac{1}{-x}=\dfrac{-1}{x} .$ Accordingly, $f(x+h)=\dfrac{-1}{(x+h)}$

By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-1}{(x+h)}-\left(\dfrac{-1}{x}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-x+(x+h)}{x(x+h)}\right]$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{h}{x(x+h)}\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{x(x+h)}$

$=\dfrac{1}{x \cdot X}=\dfrac{1}{x^{2}}$


(iii) Let $f(x)=\sin (x+1)$. Accordingly, $f(x+h)=\sin (x+h+1)$

By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}[\sin (x+h+1)-\sin (x+1)]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+1+x+1}{2}\right) \sin \left(\dfrac{x+h+1-x-1}{2}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+h+2}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$

$=\lim _{n \rightarrow 0}\left[\cos \left(\dfrac{2 x+h+2}{2}\right) \cdot \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]$

$\begin{array}{l}=\lim _{n \rightarrow 0} \dfrac{1}{h} \cos \left(\dfrac{2 x+h+2}{2}\right) \cdot \lim _{\dfrac{b}{2} \rightarrow} \dfrac{\sin \left(\dfrac{h}{2}\right)}{h} \dfrac{h}{\left.\dfrac{h}{2}\right)} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]\\=\cos \left(\dfrac{2 x+0+2}{2}\right) \cdot 1 \quad\left[\lim _{h \rightarrow 0} \dfrac{\sin x}{x}=1\right]\\=\cos (x+1)\\\text (iv) Let f(x)=\cos \left(x-\dfrac{\pi}{8}\right) Accordingly, f(x+h)-\cos \left(x+h-\dfrac{\pi}{8}\right)\\\text { By first principle, }\\f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+f)-f(x)}{h}\\=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\cos \left(x+h-\dfrac{\pi}{8}\right)-\cos \left(x-\dfrac{\pi}{8}\right)\right]\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[-2 \sin \dfrac{\left(x+h-\dfrac{\pi}{8}+x-\dfrac{\pi}{8}\right)}{2} \sin \left(\dfrac{x+h-\dfrac{\pi}{8}-x+\dfrac{\pi}{8}}{2}\right)\right]\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[-2 \sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]\\=\lim _{n \rightarrow 0}\left[-\sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right) \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]\\\left.=\lim _{n \rightarrow 0}\left[-\sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right)\right] \cdot \lim _{\dfrac{\pi}{2} \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \quad \text { [As } h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]\\=-\sin \left(\dfrac{2 x+0-\dfrac{\pi}{4}}{2}\right) \cdot 1\end{array}$

$=-\sin \left(x-\dfrac{\pi}{8}\right)$


2. Find the derivative of the following functions (it is to be understood that a, b, c, d. p, q, r and s are fixed non-zero constants and $m$ and $n$ are integers): $(x+a)$

Ans: Let $f(x)=x+a$. Accordingly. $f(x+h)-x+h+a$ By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$\lim _{n \rightarrow 0} \dfrac{x+h+a-x-a}{h}$

$\lim _{n \rightarrow 0}\left(\dfrac{h}{h}\right)$

$-\lim _{n \rightarrow 0}(1)$

$=1$


3. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p, q, r$ and s are fixed non- zero constants and $m$ and $n$ are integers): $\mathbf{(p x+q)\left(\dfrac{r}{x}+s\right)}$

Ans: Let $f(x)=(p x+q)\left(\dfrac{r}{x}+s\right)$

By Leibnitz product rule.

$f^{\prime}(x)=(p x+q)\left(\dfrac{r}{x}+s\right)^{\prime}+\left(\dfrac{r}{x}+s\right)(p x+q)^{\prime}$

$-(p x+q)\left(r x^{-1}+s\right)^{\prime}+\left(\dfrac{r}{x}+s\right)(p)$

$-(p x+q)\left(-n x^{2}\right)+\left(\dfrac{r}{x}+s\right) p$

$=(p x+q)\left(\dfrac{-r}{x^{2}}\right)+\left(\dfrac{r}{x}+s\right) p$

$=\dfrac{-p x}{x}-\dfrac{q r}{x^{2}}+\dfrac{p r}{x}+p s$

$p s-\dfrac{q r}{x^{2}}$


4. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(ax+b)(c x+d)^{2}}$

Ans: Let $f^{\prime}(x)=(a x+b)(c x+d)^{2}$

By Leibnitz product rule,

$f^{\prime}(x)=(a x+b) \dfrac{d}{d x}(c x+d)^{2} \dfrac{d}{d x}(a x+b)$

$(a x+b) \dfrac{d}{d x}\left(c^{2} x^{2}+2 c d x^{2}\right)+(c x+d)^{2} \dfrac{d}{d x}(a x+b)$

$(a x+b)\left[\dfrac{d}{d x}\left(c^{2} x^{2}\right)+\dfrac{d}{d x}(2 c d x)+\dfrac{d}{d x} d^{2}\right]+(c x+d)^{2}\left[\dfrac{d}{d x} a x+\dfrac{d}{d x} b\right]$

$=(a x+b)\left(2 c^{2} x+2 c d\right)+(c x+d)^{2} a$

$-2 c(a x+b)(c x+d)+a(c x+d)^{2}$


5. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{a x+b}{c x+d}}$

Ans: Let $f(x)=\dfrac{a x+b}{c x+d}$

By quotient rule,

$f(x)=\dfrac{(c x+d) \dfrac{d}{d x}(a x+b)-(a x+b) \dfrac{d}{d x}(c x+d)}{(c x+d)^{2}}$

$=\dfrac{(c x+d)(a)-(a x+d)(c)}{(c x+d)^{2}}$

$\dfrac{a c x+a d-a c x-b c}{(c x+d)^{2}}$

$\dfrac{a d-b c}{(c x+d)^{2}}$


6. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}}$

Ans: Let$f(x)=\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=\dfrac{\dfrac{x+1}{x}}{\dfrac{x-1}{x}}=\dfrac{x+1}{x-1}$, where $x \neq 0$

By quotient rule, $f^{\prime}(x)=\dfrac{(x-1) \dfrac{d}{d x}(x-1)-(x+1) \dfrac{d}{d x}(x-1)}{(x-1)^{2}}, x \neq 0,1$

$=\dfrac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}, x \neq 0,1$

$\dfrac{x-1-x-1}{(x-1)^{2}}, x \neq 0,1$

$\dfrac{-2}{(x-1)^{2}}, x \neq 0,1$


7. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers) $\mathbf{: \dfrac{1}{a x^{2}+b x+c}}$

Ans: Let $f(x)=\dfrac{1}{a x^{2}+b x+c}$

By quotient rule,

$f^{\prime}(x)=\dfrac{\left(a x^{2}+b x+c\right) \dfrac{d}{d x}(1)-\dfrac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}}$

$\dfrac{\left(a x^{2}+b x+c\right)(0)-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}$

$\dfrac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}$


8. Find the derivative of the following functions (it is to be understood that $a, b, c$ d, p, q, r and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{ax+b}{p x^{2}+q x+r}}$

Ans: Let $f(x)=\dfrac{a x+b}{p x^{2}+q x+r}$

By quotient rule,

$f^{\prime}(x)=\dfrac{\left(p x^{2}+q x+r\right) \dfrac{d}{d x}(a x+b)-(a x+b) \dfrac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}}$

$=\dfrac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}}$

$=\dfrac{a p x^{2}+a q x+a r-a q x+2 n p x+b q}{\left(p x^{2}+q x+r\right)^{2}}$

$\dfrac{-a p x^{2}+2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}$


9. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p$, q, $r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{p x^{2}+q x+r}{ax+b}}$

Ans: Let $f(x)=\dfrac{p x^{2}+q x+r}{a x+b}$

By the quotient rule,

$\dot{f}(x)=\dfrac{(a x+b) \dfrac{d}{d x}\left(p x^{2}+q x+\eta\right)-\left(p x^{2}+q x+r\right) \dfrac{d}{d x}(a x+b)}{(a x+b)^{2}}$

$\dfrac{(a x+b)(2 p x+q)-\left(p x^{2}+q x+r\right)(a)}{(a x+b)^{2}}$

$=\dfrac{2 a p x^{2}+a q x+2 b p x+b q-a q x^{2}-a q x-a r}{(a x+b)^{2}}$

$\dfrac{a p x^{2}+2 b p x+b q-a r}{(a x+b)^{2}}$


10. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p$, q, $r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{a}{x^{4}}-\dfrac{b}{x^{2}}+\cos x}$

Ans: Let $f(x)=\dfrac{a}{x^{4}}-\dfrac{b}{x^{2}}+\cos x$

$f^{\prime}(x)=\dfrac{d}{d x}\left(\dfrac{a}{x^{4}}\right)-\dfrac{d}{d x}\left(\dfrac{a}{x^{2}}\right)+\dfrac{d}{d x}(\cos x)$

$a \dfrac{d}{d x}\left(x^{-4}\right)-b \dfrac{d}{d x}\left(x^{2}\right)+\dfrac{d}{d x}(\cos x)$

$-a\left(-4 x^{-5}\right)-b\left(-2 x^{3}\right)+(-\sin x) \quad\left[\dfrac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right.$ and $\left.\dfrac{d}{d x}(\cos x)=-\sin x\right]$

$\dfrac{-4 a}{x^{5}}+\dfrac{2 b}{x^{3}}-\sin x$


11. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed nonzero constants and $m$ and $n$ are integers): $\mathbf{4 \sqrt{x}-2}$

Ans: Let $f(x)=4 \sqrt{x}-2$

$f^{\prime}(x)=\dfrac{d}{d x}(4 \sqrt{x}-2)=\dfrac{d}{d x}(4 \sqrt{x})-\dfrac{d}{d x}(2)$

$=4 \dfrac{d}{d x}\left(x^{\dfrac{1}{2}}\right)-0=4\left(\dfrac{1}{2} x^{\dfrac{1}{2}}\right)$

$=\left(2 x^{-\dfrac{1}{2}}\right)=\dfrac{2}{\sqrt{x}}$


12. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(ax+b)^{n}}$

Ans: Let $f(x)=(a x+b)^{n} .$ Accordingly, $f(x+h)-\{a(x+h)+b\}^{n}-(a x+a h+b)^{n}$

By first principle,

$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{(a x+a h+b)-(a x+b)^{n}}{h}$

$=\lim _{h \rightarrow 0} \dfrac{(a x+b)^{n}\left(1+\dfrac{a h}{a x+b}\right)^{n}-(a x+b)^{n}}{h}$

$=(a x+b)^{n} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left\{1+n\left(\dfrac{a h}{a x+b}\right)+\dfrac{n(n-1)}{2}\left(\dfrac{a h}{a x+b}\right)^{2}+\cdots\right\}-1\right] \quad$ (using binomial theorem)

$=(a x+b)^{n} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left(\dfrac{a h}{a x+b}\right)+\dfrac{n(n-1) a^{2} h^{2}}{2(a x+b)^{2}}+\cdots\right.$ (Terms containing higher degrees of $\left.\left.h\right)\right]$

$=(a x+b)^{n} \lim _{n \rightarrow 0}\left[\dfrac{n a}{(a x+b)}+\dfrac{n(n-1) \nexists^{7} h^{2}}{2(a x+b)^{2}}+\cdots\right]$

$=(a x+b)^{n}\left[\dfrac{n a}{(a x+b)}+0\right]$

$=n a \dfrac{(a x+b)^{n}}{a x+b}$

$-n a(a x+b)^{n-1}$


13. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(a x+b)^{n}(c x+d)^{m}}$

Ans: Let $f(x)=(a x+b)^{n}(c x+d)^{m}$

By Leibnitz product rule,

$f^{\prime}(x)=(a x+b)^{n} \dfrac{d}{d x}(c x+d)^{m}+(c x+d)^{m} \dfrac{d}{d x}(a x+b)^{n}$

Now let $f_{1}(x)=(c x+d)^{m}$

$f_{1}(x+h)=(c x+c h+d)^{m}$

$f_{1}^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f_{1}(x+h)-f_{1}(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{(c x+c h+d)^{m}-(c x+d)^{m}}{h}$

$=(c x+d)^{m} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left(1+\dfrac{c h}{c x+d}\right)^{m}-1\right]$

$=(c x+d)^{m} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\left(1+\dfrac{m c h}{(c x+d)}+\dfrac{m(m-1)}{2} \dfrac{c^{2} h^{2}}{(c x+d)^{2}}+\cdots\right)^{m}-1\right]$

$=(c x+d)^{m} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{m c h}{(c x+d)}+\dfrac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\cdots\right.$ (Terms containing higher degree oh $\left.\left.h\right)\right]$

$=(c x+d)^{m} \lim _{h \rightarrow 0}\left[\dfrac{m c}{(c x+d)}+\dfrac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\cdots\right]$

$=(C x+a)^{m}\left[\dfrac{m c h}{(c x+d)}+0\right]$

$=\dfrac{m c(c x+d)^{m}}{(c x+d)}$

$=m c(c x+d)^{m-1}$

$\dfrac{d}{d x}(c x+d)^{m}=m d(x+d)^{m-1}$

Similarly, $\dfrac{d}{d x}(a x+b)^{n}=n a(a x+b)^{n-1}$... (3)

Therefore, from (1), (2), and (3), we obtain

$f^{\prime}(x)=(a x+b)^{n}\left\{m c(c x+d)^{m-1}\right\}+(c+d)^{m}\left\{n a(a x+b)^{n-1}\right\}$

$=(a x+b)^{n-1}(c x+d)^{m-1}[m c(a x+b)+n a(c x+d)]$


14. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\sin (x+a)}$

Ans: Let, $f(x)=\sin (x+a)$

$f(x+h)=\sin (x+h+a)$

By first principle, $f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{\sin (x+h+a)-\sin (x+a)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+a+x+a}{2}\right) \sin \left(\dfrac{x+h+a-x-a}{2}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+2 a+h}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$

$=\lim _{h \rightarrow 0}\left[\cos \left(\dfrac{2 x+2 a+h}{2}\right)\left[\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]\right]$

$=\lim _{h \rightarrow 0} \cos \left(\dfrac{2 x+2 a+h}{2}\right) \cdot \lim _{\dfrac{h}{2} \rightarrow 0}\left[\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right] \quad\left[\right.$ As $\left.h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]$

$=\cos \left(\dfrac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{n \rightarrow 0} \dfrac{\sin x}{x}=1\right]$

$=\cos (x+a)$


15. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\operatorname{cosec} x \cot x}$

Ans: Let $f(x)=\operatorname{cosec} x \cot x$

By Leibnitz product rule,

$f^{\prime}(x)=\operatorname{cosec} x(\cot x)^{\prime}+\cot x(\operatorname{cosec} x)^{\prime} \ldots .(1)$

Let $f_{1}(x)=\cot x .$ Accordingly, $f_{1}(x+h)=\cot (x+h)$

By first principle,

$f^{\prime \prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{\cot (x+h)-\cot (x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\cos (x+h)}{\sin (x+h)}-\dfrac{\cos (x)}{\sin x}\right)$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right)$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin (x-x+h)}{\sin x \sin (x+h)}\right)$

$=\dfrac{1}{\sin x^{n \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin (-h)}{\sin (x+h)}\right]$

$=\dfrac{-1}{\sin x}\left(\lim _{n \rightarrow 0} \dfrac{\sin h}{h}\right)\left(\lim _{n \rightarrow 0} \dfrac{1}{\sin (x+h)}\right)$

$=\dfrac{-1}{\sin x} \cdot 1 \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\sin (x+0)}\right)$

$=\dfrac{-1}{\sin ^{2} x}$

$=-\operatorname{cosec}^{2} x$

$\therefore(\cot x)^{\prime}=-\operatorname{cosec}^{2} x \quad \ldots$ (2)

Now, let $f_{2}(x)=\operatorname{cosec} x .$ Accordingly, $f_{2}(x+h)=\operatorname{cosec}(x+h)$

By first principle, $f_{2}(x)=\lim _{n \rightarrow 0} \dfrac{f_{2}(x+h)-f_{2}(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec}(x)]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{1}{\sin (x+h)}-\dfrac{1}{\sin x}\right)$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right)$

$=\dfrac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{2 \cos \left(\dfrac{x+x+h}{2}\right) \sin \left(\dfrac{x-x-h}{2}\right)}{\sin (x+h)}\right]$

$=\dfrac{1}{\sin x} \cdot \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{2 \cos \left(\dfrac{2 x+h}{2}\right) \sin \left(\dfrac{-h}{2}\right)}{\sin (x+h)}\right]$

$=\dfrac{1}{\sin x} \cdot \lim _{h \rightarrow 0}\left[\dfrac{-\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \cdot \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+h)}\right]$

$=\dfrac{-1}{\sin x} \cdot \lim _{h \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \cdot \lim _{n \rightarrow 0} \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+h)}$

$=\dfrac{-1}{\sin x} \cdot 1 \cdot \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+0)}$

$=\dfrac{-1}{\sin x} \cdot \dfrac{\cos x}{\sin x}$

$=-\operatorname{cosec} x \cdot \cot x$

$\therefore(\operatorname{cosec} x)^{\prime}=-\operatorname{cosec} x \cdot \cot x$

From (1), (2), and (3), we obtain

$f^{\prime}(x)=\operatorname{cosec} x\left(-\operatorname{cosec}^{2} x\right)+\cot x(-\operatorname{cosec} x \cot x)$

$=-\operatorname{cosec}^{3} x-\cot ^{2} x \operatorname{cosec} x$


16. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{\cos x}{1+\sin x}}$

Ans: Let $f(x)=\dfrac{\cos x}{1+\sin x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{(1+\sin x) \dfrac{d}{d x}(\cos x)-(\cos x) \dfrac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}}$

$=\dfrac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}}$

$=\dfrac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}$

$=\dfrac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}}$

$=\dfrac{-\sin x-1}{(1+\sin x)^{2}}$

$=\dfrac{-(1-\sin x)}{(1+\sin x)^{2}}$

$=\dfrac{-1}{(1+\sin x)^{2}}$


17. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and m and n are integers): $\mathbf{\dfrac{\sin x+\cos x}{\sin x-\cos x}}$

Ans:17: Let $f(x)=\dfrac{\sin x+\cos x}{\sin x-\cos x}$

By the quotient rule,

$f^{\prime \prime}(x)=\dfrac{(\sin x-\cos x) \dfrac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \dfrac{d}{d x}(\sin x-\cos x)}{(\sin x+\cos x)^{2}}$

$=\dfrac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x+\cos x)^{2}}$

$=\dfrac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x+\cos x)^{2}}$

$=\dfrac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x+\cos x)^{2}}$

$=\dfrac{-[1+1]}{(\sin x-\cos x)^{2}}$

$=\dfrac{-2}{(\sin x-\cos x)^{2}}$


18. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{\sec x-1}{\sec x+1}}$

Ans: Let $f(x)=\dfrac{\sec x-1}{\sec x+1}$

$f(x)=\dfrac{\dfrac{1}{\cos x}-1}{\dfrac{1}{\cos x}+1}=\dfrac{1-\cos x}{1+\cos x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{(1+\cos x) \dfrac{d}{d x}(1-\cos x)-(1-\cos x) \dfrac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}$

$=\dfrac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}$

$=\dfrac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}}$

$=\dfrac{2 \sin x}{(1+\cos x)^{2}}$

$=\dfrac{2 \sin x}{\left(1+\dfrac{1}{\sec x}\right)^{2}}=\dfrac{2 \sin x}{\dfrac{(\sec x+1)^{2}}{\sec ^{2} x}}$

$=\dfrac{2 \sin x \sec ^{2} x}{(\sec x+1)^{2}}$

$=\dfrac{\dfrac{2 \sin x}{\cos x} \sec x}{(\sec x+1)^{2}}$

$=\dfrac{2 \sec x \tan x}{(\sec x+1)^{2}}$


19. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\sin ^{n} x}$

Ans: Let $y=\sin ^{n} x$

Accordingly, for $n=1, y=\sin x$

$\therefore \dfrac{d y}{d x}=\cos x$, i.e., $\dfrac{d}{d x} \sin x=\cos x$

For $n=2, y=\sin ^{2} x$.

$\therefore \dfrac{d y}{d x}=\dfrac{d}{d x}(\sin x \sin x)$

$=(\sin x)^{\prime}\left(\sin x+\sin x(\sin x)^{\prime} \quad\right.$ (By Leibnitz product rule)

$=\cos x \sin x+\sin x \cos x$

$=2 \sin x \cos x$

$\ldots .(1)$

For $n=3, y=\sin ^{3} x$

$\therefore \dfrac{d y}{d x}=\dfrac{d}{d x}\left(\sin x \sin ^{2} x\right)$

$=(\sin x)^{\prime} \sin ^{2} x+\sin x(\sin x)^{\prime}$

(By Leibnitz product rule)

$-\cos x \sin ^{2} x+\sin x(2 \sin x \cos x) \quad[$ Using $(1)]$

$=\cos x \sin ^{2} x+\sin ^{2} x \cos x$

$=3 \sin ^{2} x \cos x$

We assert that $\dfrac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$

Let our assertion be true for $n=k$.

i.e., $\dfrac{d}{d x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x \quad \ldots .$ (2)

Consider,

$\dfrac{d}{d x}\left(\sin ^{k+1} x\right)=\dfrac{d}{d x}\left(\sin x \sin ^{(k)} x\right)$

$=(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{n}$

(By Leibnitz product rule)

$=\cos x \sin ^{k} x+\sin x\left(k \sin ^{k-1} \cos x\right) \quad[$ Using $(2)]$

$=\cos x \sin ^{k} x+2 \sin ^{k} x \cos x$

$-(k+1) \sin ^{k} x \cos x$

Thus, our assertion is true for $n=k+1$.

Hence, by mathematical induction, $\dfrac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$


20. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and n are integers): $\mathbf{\dfrac{a+b \sin x}{c+d \cos x}}$

Ans: Let $f(x)=\dfrac{a+b \sin x}{c+d \cos x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{(c+d \cos x) \dfrac{d}{d x}(a+b \sin x)-(a+b \sin x) \dfrac{d}{d x}(c+d \cos x)}{(c+d \cos x)^{2}}$

$=\dfrac{(c+d \cos x)(b \cos x)-(a+b \sin x)(-d \sin x)}{(c+d \cos x)^{2}}$

$=\dfrac{c b \cos x+b d \cos ^{2} x+a d \sin x+b d \sin ^{2} x}{(c+d \cos x)^{2}}$

$=\dfrac{b c \cos x+a d \sin x+b d\left(\cos ^{2} x+\sin ^{2} x\right)}{(C+d \cos x)^{2}}$

$=\dfrac{b c \cos x+a d \sin x+b d}{(c+d \cos x)^{2}}$


21. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{\sin (x+a)}{\cos x}}$

Ans: Let $f(x)=\dfrac{\sin (x+a)}{\cos x}$

By the quotient rule,

$f^{\prime}(x)=\dfrac{\cos x \dfrac{d}{d x}[\sin (x+a)]-\sin (x+a) \dfrac{d}{d x} \cos x}{\cos ^{2} x}$

$f^{\prime}(x)=\dfrac{\cos x \dfrac{d}{d x}[\sin (x+a)]-\sin (x+a) \dfrac{d}{d x}(-\sin x)}{\cos ^{2} x}$

Let $g(x)-\sin (x+a) .$ Accordingly,$g(x+h)=\sin (x+h+a)$

By first principle,

$g^{\prime}(x)=\lim _{h \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}[\sin (x+h+a)-\sin (x+a)]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+a+x+a}{2}\right) \sin \left(\dfrac{x+h+a-x-a}{2}\right)\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+2 a+h}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$

$=\lim _{n \rightarrow 0}\left[\cos \left(\dfrac{2 x+2 a+h}{h}\right)\left\{\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}\right]$

$=\lim _{n \rightarrow 0} \cos \left(\dfrac{2 x+2 a+h}{h}\right) \cdot \lim _{n \rightarrow 0}\left\{\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\} \quad\left[\right.$ As $\left.h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]$

$=\left(\cos \dfrac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{n \rightarrow 0} \dfrac{\sin h}{h}=1\right]$

$=\cos (x+a) \quad \ldots$ (ii)

From (i) and (ii), we obtain $f^{\prime}(x)=\dfrac{\cos x \cos (x+a)+\sin x \sin (x+a)}{\cos ^{2} x}$

$=\dfrac{\cos (x+a-x)}{\cos ^{2} x}$

$=\dfrac{\cos a}{\cos ^{2} x}$


22. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers) $\mathbf{: x^{4}(5 \sin x-3 \cos x)}$

Ans: Let $f(x)=x^{4}(5 \sin x-3 \cos x)$

By product rule.

$f^{\prime}(x)=x^{4} \dfrac{d}{d x}(5 \sin x-3 \cos x)+(5 \sin x-3 \cos x) \dfrac{d}{d x}\left(x^{4}\right)$

$=x^{4}\left[5 \dfrac{d}{d x}(\sin x)-3 \dfrac{d}{d x}(\cos x)\right]+(5 \sin x-3 \cos x) \dfrac{d}{d x}\left(x^{4}\right)$

$=x^{4}[5 \cos x-3(-\sin x)]+(5 \sin x-3 \cos x)\left(4 x^{3}\right)$

$=x^{3}[5 x \cos x+3 x \sin x+20 \sin x-12 \cos x]$


23. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\mathbf{\left(x^{2}+1\right) \cos x}$

Ans: Let $f(x)=\left(x^{2}+1\right) \cos x$

By product rule.

$f^{\prime}(x)=\left(x^{2}+1\right) \dfrac{d}{d x}(\cos x)+\cos x \dfrac{d}{d x}\left(x^{2}+1\right)$

$=\left(x^{2}+1\right)(-\sin x)+\cos x(2 x)$

$=-x^{2} \sin x-\sin x+2 x \cos x$


24. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\left(ax^{2}+\sin x\right)(p+q \cos x)}$

Ans: Let $f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)$

By product rule.

$f^{\prime}(x)=\left(a x^{2}+\sin x\right) \dfrac{d}{d x}(p+q \cos x)+(p+q \cos x) \dfrac{d}{d x}\left(a x^{2}+\sin x\right)$

$=\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x)$

$=-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)$


25. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(x+\cos x)(x-\tan x)}$

Ans: Let $f(x)=(x+\cos x)(x-\tan x)$

By product rule,

$f^{\prime}(x)=(x+\cos x) \dfrac{d}{d x}(x-\tan x)+(x-\tan x) \dfrac{d}{d x}(x+\cos x)$

$=(x+\cos x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)$

$=(x+\cos x)\left[1-\dfrac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)$

Let $g(x)=\tan x .$ Accordingly,$g(x+h)=\tan (x+h)$

By first principle,

$g^{\prime \prime}(x)=\lim _{n \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$

$=\lim _{h \rightarrow 0} \dfrac{\tan (x+h)-\tan (x)}{h}$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]$

$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x \cos (x+h)}\right]$

$=\dfrac{1}{\cos x^{n \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h)}\right]$

$=\dfrac{1}{\cos x^{h \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin h}{\cos (x+h)}\right]$

$=\dfrac{1}{\cos x}\left(\lim _{n \rightarrow 0} \dfrac{\sin h}{h}\right)\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h)}\right)$

$=\dfrac{1}{\cos x} \cdot \cdot\left(\dfrac{1}{\cos (x+0)}\right)$

$=\dfrac{1}{\cos ^{2} x}$

$=\sec ^{2} x \quad$... (ii)

Therefore, from (i) and (ii). We obtain

$f^{\prime}(x)=(x+\cos x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1-\sin x)$

$=(x+\cos x)\left(-\tan ^{2} x\right)+(x-\tan x)(1-\sin x)$

$=-\tan ^{2} x(x+\cos x)+(x-\tan x)(1-\sin x)$


26. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{4 x+5 \sin x}{3 x+7 \cos x}}$

Ans: Let $f(x)=\dfrac{4 x+5 \sin x}{3 x+7 \cos x}$

Quotient rule,

$f^{\prime}(x)=\dfrac{(3 x+7 \cos x) \dfrac{d}{d x}(4 x+5 \sin x)-(4 x+5 \sin x) \dfrac{d}{d x}(3 x+7 \cos x)}{(3 x+7 \cos x)^{2}}$

$=\dfrac{(3 x+7 \cos x)\left[4 \dfrac{d}{d x}(x)+5 \dfrac{d}{d x}(\sin x)\right]-(4 x+5 \sin x)\left[3 \dfrac{d}{d x}(x)+7 \dfrac{d}{d x}(\cos x)\right]}{(3 x+7 \cos x)^{2}}$

$=\dfrac{(3 x+7 \cos x)[4 x+5 \cos x]-(4 x+5 \sin x)[3-7 \sin x]}{(3 x+7 \cos x)^{2}}$

$=\dfrac{12 x+15 x \cos x+28 x \cos x+35 \cos ^{2} x-12 x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$

$=\dfrac{15 x \cos x+28 \cos x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$

$=\dfrac{35+15 x \cos x+28 \cos x+28 x \sin x-15 \sin x}{(3 x+7 \cos x)^{2}}$


27. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x^{2} \cos \left(\dfrac{\pi}{4}\right)}{\sin x}}$

Ans: Let $\mathrm{f}(\mathrm{x})=\dfrac{x^{2} \cos \left(\dfrac{\pi}{4}\right)}{\sin x}$

By quotient rule, $f^{\prime}(x)=\cos \left(\dfrac{\pi}{4}\right)\left[\dfrac{\sin x \dfrac{d}{d x}\left(x^{2}\right)-x^{2} \dfrac{d}{d x}(\sin x)}{\sin ^{2} x}\right]$

$=\cos \left(\dfrac{\pi}{4}\right)\left[\dfrac{\sin x(2 x)-x^{2}(\cos x)}{\sin ^{2} x}\right]$

$=\dfrac{x \cos \dfrac{\pi}{4}[2 \sin x-x \cos x]}{\sin ^{2} x}$


28. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, p, q, r and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x}{1+\tan x}}$

Ans: Let $f(x)=\dfrac{x}{1+\tan x}$

$f(x)=\dfrac{(1+\tan x) \dfrac{d}{d x}(x)-(x) \dfrac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$

$f^{\prime}(x)=\dfrac{(1+\tan x)-x \dfrac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$

Let $g(x)=1+\tan x .$ Accordingly $g(x+h)=1+\tan (x+h)$.

By first principle, $\dot{g}(x)=\lim _{n \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$

$\lim _{h \rightarrow 0}\left[\dfrac{1+\tan (x+h)-1-\tan (x)}{h}\right]$

$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]$

$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos x(x+h)}{\cos (x+h) \cos x}\right]$

$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]$

$\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sinh }{\cos (x+h) \cos x}\right]$

$-\left(\lim _{n \rightarrow 0} \dfrac{\sinh }{h}\right) \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h) \cos x}\right)$

$-1 \times \dfrac{1}{\cos ^{2}}=\sec ^{2} x$

$\Rightarrow \dfrac{d}{d x}\left(1+\tan ^{2} x\right)=\sec ^{2} x$

From (i) and (ii), we obtain

$\dot{f}(x)=\dfrac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}$


29. Find the derivative of the following functions (it is to be understood that $\mathrm{a}, \mathrm{b}, \mathrm{c}$, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\mathbf{(x+\sec x)(x-\tan x)}$

Ans: Let $f(x)=(x+\sec x)(x-\tan x)$

By product rule.

$f(x)=(x+\sec x) \dfrac{d}{d x}(x-\tan x)+(x-\tan x) \dfrac{d}{d x}(x+\sec x)$

$-(x+\sec x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x} \tan x\right]+(x-\tan x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x} \sec x\right]$

$\left.-f(x+\sec x)\left[1-\dfrac{d}{d x} \tan x\right)\right]+(x-\tan x)\left[1+\dfrac{d}{d x} \sec x\right]$

$\ldots(\mathrm{i})$

Let $f_{1}(x)=\tan x, f_{2}(x)=\sec x$

Accordingly, $f_{1}(x+h) \cdot \tan (x+h)$ and $f_{2}(x+h)-\sec (x+h)$

$f_{1}^{\prime}(x)=\lim _{n \rightarrow 0}\left(\dfrac{f_{1}(x+h)-f_{1}(x)}{h}\right)$

$=\lim _{h \rightarrow 0}\left[\dfrac{\tan (x+h)-\tan (x)}{h}\right]$

$\begin{array}{l}-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos x(x+h)}{\cos (x+h) \cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sinh }{\cos (x+h) \cos x}\right]\\-\left(\lim _{n \rightarrow 0} \dfrac{\sinh }{h}\right) \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h) \cos x}\right)\\-1 \times \dfrac{1}{\cos ^{2}}=\sec ^{2} x\\\Rightarrow \dfrac{d}{d x}\left(1+\tan ^{2} x\right)=\sec ^{2} x\\f_{2}^{\prime}(x)=\lim _{n \rightarrow 0}\left(\dfrac{f_{2}+(x+h)-f_{2}(x)}{h}\right)\\=\lim _{h \rightarrow 0}\left(\dfrac{\sec (x+h)-\sec (x)}{h}\right)\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{1}{\cos (x+h)}-\dfrac{1}{\cos x}\right)\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}\right)\\=\dfrac{1}{\cos x^{\prime \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{-2 \sin \left(\dfrac{x+x+h}{2}\right) \cdot \sin \left(\dfrac{x-x-h}{2}\right)}{\cos (x+h)}\right]\\=\dfrac{1}{\cos x} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-2 \sin \left(\dfrac{2 x+h}{2}\right) \cdot \sin \left(\dfrac{-h}{2}\right)}{\cos (x+h)}\right]\end{array}$

$=\dfrac{1}{\cos x} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin \left(\dfrac{2 x+h}{2}\right)\left\{\dfrac{\sin\left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}}{\cos (x+h)}\right]$

$=\sec x \dfrac{\left\{\lim _{n \rightarrow 0} \sin \left(\dfrac{2 x+h}{2}\right)\right\}\left\{\lim _{\dfrac{h}{2} \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}}{\lim _{n \rightarrow 0} \cos (x+h)}$

$=\sec x \cdot \dfrac{\sin x \cdot 1}{\cos x}$

$\Rightarrow \dfrac{d}{d x} \sec x=\sec x \tan x$

From (i). (ii), and (iii), we obtain

$f^{\prime}(x)=(x+\sec x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1+\sec x \tan x)$


30. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x}{\sin ^{n} x}}$

Ans: Let $\mathrm{f}(\mathrm{x})=\dfrac{x}{\sin ^{n} x}$

By quotient rule, $f^{\prime}(x)=\dfrac{\sin ^{n} x \dfrac{d}{d x} x-x \dfrac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$

It can be easily shown that $\dfrac{d}{d x} \sin ^{n} x=n \sin ^{n-1} x \cos x$

Therefore,

$f^{\prime}(x)=\dfrac{\sin ^{n} \times \dfrac{d}{d x} x-x \dfrac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$

$=\dfrac{\sin ^{n} x \cdot 1-x\left(\operatorname{nin}^{n-1} x \cos x\right)}{\sin ^{2 n} x}$

$=\dfrac{\sin ^{n-1} x(\sin x-n x \cos x)}{\sin ^{2 n} x}$

$=\dfrac{\sin x-n x \cos x}{\sin ^{n+1} x}$


Conclusion

NCERT Solutions for Class 11 Maths Chapter 12, focused on Limits and Derivatives, are fundamental for understanding the basics of calculus. This chapter focuses on finding out the rates of change (derivatives) of functions and how they solve particular values (limits). To fully understand these concepts, you must focus on solving various kinds of problems. The basic foundation for advanced mathematical studies and practical applications is a knowledge of limits and derivatives. Using NCERT Solutions regularly provides complete exam preparation and improves your mathematical problem-solving skills.


Class 11 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.1

32 Questions & Solutions

Exercise 12.2

11 Questions & Solutions


CBSE Class 11 Maths Chapter 12 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 12 Limits and Derivatives - 2025-26

1. Where can I find accurate, step-by-step NCERT Solutions for the Miscellaneous Exercise of Class 11 Maths Chapter 12?

Vedantu provides detailed, step-by-step NCERT Solutions for the Class 11 Maths Chapter 12 Miscellaneous Exercise, created by subject matter experts in line with the CBSE 2025-26 syllabus. Each solution explains the correct method, formulas used, and intermediate steps to ensure you understand the logic and can solve similar problems in your exams.

2. What is the correct method for solving questions involving the quotient rule in the NCERT Class 11 Maths Chapter 12 Miscellaneous Exercise?

To correctly apply the quotient rule for a function f(x) = u(x) / v(x), you must follow these steps as per the NCERT methodology:

  • Identify the numerator function, u(x), and the denominator function, v(x).
  • Find the derivatives of both functions, which are u'(x) and v'(x).
  • Apply the formula: f'(x) = [v(x)u'(x) - u(x)v'(x)] / [v(x)]².
  • Simplify the resulting expression to get the final answer.
Careful application of this formula is essential for many problems in this exercise.

3. How do you find the derivative of a function from the first principle as asked in the Chapter 12 Miscellaneous Exercise?

To find a derivative using the first principle, you must use the limit definition. The correct method involves these steps:

  • Start with the formula: f'(x) = lim (h→0) [f(x+h) - f(x)] / h.
  • Substitute (x+h) into the given function f(x).
  • Simplify the numerator algebraically to isolate and cancel the 'h' term with the denominator.
  • Apply the limit where h approaches 0 to the simplified expression.
This method is fundamental for understanding the definition of a derivative.

4. What is a common mistake to avoid when finding derivatives of trigonometric functions in the miscellaneous exercise?

A frequent mistake is incorrectly applying the chain rule with trigonometric functions. For instance, when differentiating a function like sin(ax+b), students often forget to multiply by the derivative of the inner function (ax+b), which is 'a'. The correct derivative is a*cos(ax+b). The NCERT solutions for this exercise provide clear examples to help avoid this common error.

5. Why is it important to simplify a function algebraically before finding its limit in the miscellaneous exercise problems?

Algebraic simplification is a critical first step because direct substitution of the limit value often results in an indeterminate form like 0/0. By using methods such as factorization, rationalisation, or applying standard identities, you can eliminate the terms causing this issue. This process reveals the true value the function is approaching, which is the correct way to solve limit problems as per the NCERT approach.

6. How do the NCERT Solutions for the Miscellaneous Exercise help distinguish between using the first principle and standard differentiation rules?

The NCERT Solutions clarify when to use each method based on the question's explicit instructions. If a question states "find the derivative from the first principle" or "from the definition," you must use the limit method. For all other differentiation problems, the correct and more efficient approach is to use the standard differentiation rules (product, quotient, chain, etc.). The solutions demonstrate both methods, reinforcing the conceptual difference and proper application.

7. What is the recommended step-by-step strategy to solve the complex problems in the Chapter 12 Miscellaneous Exercise?

A reliable strategy for tackling these challenging NCERT problems is as follows:

  • 1. Identify the Core Task: First, determine if the problem requires finding a limit or a derivative.
  • 2. Analyse the Function: Examine if the function involves a product, quotient, or is a composite function requiring the chain rule.
  • 3. Select the Correct Method: Choose the appropriate rule (e.g., product rule for derivatives) or technique (e.g., factorization for limits).
  • 4. Execute Step-by-Step: Apply the chosen formula or method carefully, showing each step clearly.
  • 5. Simplify the Result: Perform the necessary algebraic or trigonometric simplification to arrive at the final answer.

8. How does mastering the solutions for the miscellaneous exercise of Chapter 12 build a foundation for Class 12 Calculus?

Mastering the miscellaneous exercise is vital because it tests the combined application of all concepts from the Limits and Derivatives chapter. Strong problem-solving skills developed here, particularly with the chain rule and product/quotient rules, are directly applicable and foundational for more advanced topics in Class 12 Calculus, such as Continuity and Differentiability, Application of Derivatives, and Integration.

9. Which key limit formulas are essential for solving problems in the Class 11 Maths Chapter 12 Miscellaneous Exercise?

To successfully solve the limit problems in this exercise, students must master the following standard limits from the NCERT syllabus:

  • The algebraic limit: lim (x→a) [xⁿ - aⁿ] / [x - a] = naⁿ⁻¹.
  • The key trigonometric limit: lim (x→0) sin(x)/x = 1.
Many problems require algebraic or trigonometric manipulation to convert the given expression into one of these standard forms before the solution can be found.