Download Free PDF of Introduction to Three Dimensional Geometry for Class 11 Maths
You’ve reached the NCERT Solutions for Class 11 Maths Chapter 11: Introduction to Three Dimensional Geometry. This chapter begins your journey into 3D coordinate geometry, an area essential for building your space visualization skills and handling board-level questions. Each solution on this page guides you through lines, planes, and points in space, just as your NCERT book requires.
Here you’ll find stepwise NCERT solutions for class 11 maths chapter 11 exercise 11.2, covering the 3D distance formula, section formula, and key methods for solving 3D geometry problems. Since this chapter routinely appears in exams and holds steady weightage within the “Coordinate Geometry” unit, carefully working through every exercise ensures you won’t miss marks or get caught off-guard by typical question formats.
Each answer here focuses on clarity and reasoning, helping you handle cartesian coordinates, visualize planes, and solidify concepts for competitive exams down the road. With Vedantu’s support, you can master core 3D coordinate axes concepts and approach your board exams with greater confidence.
Exercises under NCERT Class 11 Maths Chapter 11 – Introduction to Three-Dimensional Geometry
Exercise 11.1: This exercise introduces the concept of three-dimensional space and the coordinate system used to represent points in three dimensions. Students will learn about the distance formula in three-dimensional space and how to find the coordinates of a point dividing a line segment in a given ratio.
Exercise 11.2: In this exercise, students will learn about the direction ratios of a line, the angle between two lines, and the equation of a plane in different forms. They will also practice finding the distance between a point and a plane.
Exercise 11.3: This exercise focuses on the concept of the angle between two planes and the shortest distance between two skew lines. Students will learn how to find the angle between two planes and the shortest distance between two skew lines.
Miscellaneous Exercise: This exercise includes a mix of questions covering all the concepts taught in the chapter. Students will have to apply their knowledge of three-dimensional geometry to solve various problems and answer questions. They will also practice finding the direction ratios of a line, the equation of a plane, the angle between two lines, and the distance between a point and a plane.
Access NCERT Solutions for Class 11 Maths Chapter 11 - Introduction to Three-Dimensional Geometry
Exercise 11.1
1. A point is on the $\mathbf{x}$- axis. What are its $\mathbf{y}$-coordinate and $\mathbf{z}$ -coordinates?
Ans: When a point is on the $x$-axis, then the $y$-coordinate and $z$-coordinate of that point are both zero.
2. A point is in the $\mathbf{xz}$-plane. What can you say about its $\mathbf{y}$-coordinate?
Ans: When a point is on the $xz$-plane, then $y$-coordinate of that point is zero.
3. Name the octant in which the following points lie:
$\left( \mathbf{1,2,3} \right)\mathbf{,}\left( \mathbf{4,-2,3} \right)\mathbf{,}\left( \mathbf{4,-2,-5} \right)\mathbf{,}\left( \mathbf{4,2,-5} \right)$, $\left( -\mathbf{4},\mathbf{2},-\mathbf{5} \right),\left( -\mathbf{4},\mathbf{2},\mathbf{5} \right),$ $\left( -\mathbf{3},-\mathbf{1},\mathbf{6} \right),$$\left( -\mathbf{2},-\mathbf{4},-\mathbf{7} \right)$.
Ans: Consider the following table.
Octants | $I$ | $II$ | $III$ | $IV$ | $V$ | $VI$ | $VII$ | $VIII$ |
$x$ | $+$ | $-$ | $-$ | $+$ | $+$ | $-$ | $-$ | $+$ |
$y$ | $+$ | $+$ | $-$ | $-$ | $+$ | $+$ | $-$ | $-$ |
$z$ | $+$ | $+$ | $+$ | $+$ | $-$ | $-$ | $-$ | $-$ |
By following rules given in the above table, we can conclude the following results.
Since, all the three coordinates in the point $\left( 1,2,3 \right)$ are positive, so this point is in the octant $I$.
Since in the point $\left( 4,-2,3 \right)$, the $x$ and $z$-coordinate are positive and the $y$-coordinate is negative, so this point is in the octant $IV$.
Since in the point $\left( 4,-2,-5 \right)$, the $y$ and $z$-coordinate are negative and the $x$-coordinate is positive, so this point is in the octant $VIII$.
Since in the point $\left( 4,2,-5 \right)$, the $x$ and $y$-coordinate are positive and the $z$-coordinate is negative, so this point is in the octant $V$.
Since in the point $\left( -4,2,-5 \right)$, the $x$ and $z$-coordinate are negative and the $y$-coordinate is positive, so this point is in the octant $VI$.
Since in the point $\left( -3,-1,6 \right)$, the $x$ and $y$-coordinate are negative and the $z$-coordinate is positive, so this point is in the octant $II$.
Since in the point $\left( -2,-4,-7 \right)$, all the three coordinates in the point are negative, so this point is in the octant $VII$.
4. Fill in the following blanks:
(i) The $\mathbf{x}$-axis and $\mathbf{y}$-axis taken together determine a plane known as ________.
Ans: The $x$-axis and $y$-axis taken together determine a plane known as $XY$ plane.
(ii) The coordinates of points in the $\mathbf{XY}$-plane are of the form __________.
Ans: The coordinates of points in the $XY$-plane are of the form $\left( x,y,0 \right)$.
(iii) Coordinate planes divided the space into ________ octants.
Ans: Coordinate planes divided the space into eight octants.
Exercise 11.2
1. Find the distance between the following pairs of points:
(i) $\left( \mathbf{2,3,5} \right)$ and $\left( \mathbf{4,3,1} \right)$.
Ans: Recall that, distance between any two points $P\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and \[Q\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] is $PQ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$
Therefore, distance between the points $\left( 2,3,5 \right)$ and $\left( 4,3,1 \right)$ is
$ =\sqrt{{{\left( 4-2 \right)}^{2}}+{{\left( 3-3 \right)}^{2}}+{{\left( 1-5 \right)}^{2}}}$
$ =\sqrt{{{2}^{2}}+{{0}^{2}}+{{\left( -4 \right)}^{2}}} $
$ =\sqrt{4+16} $
$ =\sqrt{20} $
$=2\sqrt{5}$ units.
(ii) $\left( \mathbf{-3,7,2} \right)$ and $\left( \mathbf{2,4,-1} \right)$.
Ans: The distance between the points $\left( -3,7,2 \right)$ and $\left( 2,4,-1 \right)$ is
$ =\sqrt{{{\left( 2+3 \right)}^{2}}+{{\left( 4-7 \right)}^{2}}+{{\left( -1-2 \right)}^{2}}} $
$ =\sqrt{{{5}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( -3 \right)}^{2}}} $
$ =\sqrt{25+9+9} $
$=\sqrt{43}$ units
(iii) $\left( -\mathbf{1},\mathbf{3},-\mathbf{4} \right)$ and $\left( \mathbf{1},-\mathbf{3},\mathbf{4} \right)$.
Ans: The distance between the points $\left( -1,3,-4 \right)$ and $\left( 1,-3,4 \right)$ is
$=\sqrt{{{\left( 1+1 \right)}^{2}}+{{\left( -3-3 \right)}^{2}}+{{\left( 4+4 \right)}^{2}}} $
$ =\sqrt{{{2}^{2}}+{{\left( -6 \right)}^{2}}+{{8}^{2}}} $
$ =\sqrt{4+36+64} $
$ =\sqrt{104} $
$=2\sqrt{26}$ units
(iv) $\left( \mathbf{2},-\mathbf{1},\mathbf{3} \right)$ and $\left( \mathbf{-2,1,3} \right)$.
Ans: The distance between the points $\left( 2,-1,3 \right)$ and $\left( -2,1,3 \right)$ is
$=\sqrt{{{\left( -2-2 \right)}^{2}}+{{\left( 1+1 \right)}^{2}}+{{\left( 3-3 \right)}^{2}}} $
$ =\sqrt{{{\left( -4 \right)}^{2}}+{{2}^{2}}+{{0}^{2}}} $
$ =\sqrt{16+4}$
$ =\sqrt{20}$
$=2\sqrt{5}$ units
2. Show that the points $\left( \mathbf{-2,3,5} \right),\left( \mathbf{1},\mathbf{2},\mathbf{3} \right)$ and $\left( \mathbf{7},\mathbf{0},-\mathbf{1} \right)$ are collinear.
Ans: Recall that, any points $P$, $Q$, $R$ are said to be collinear if they lie on a line.
Now, suppose that the given points are $P\left( -2,3,5 \right)$, $Q\left( 1,2,3 \right)$, and $R\left( 7,0,-1 \right)$.
Then, $PQ=\sqrt{{{\left( 1+2 \right)}^{2}}+{{\left( 2-3 \right)}^{2}}+{{\left( 3-5 \right)}^{2}}}$
$ =\sqrt{{{3}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( -2 \right)}^{2}}} $
$ =\sqrt{9+1+4} $
$=\sqrt{14}$ units
$QR=\sqrt{{{\left( 7-1 \right)}^{2}}+{{\left( 0-2 \right)}^{2}}+{{\left( -1-3 \right)}^{2}}}$
$=\sqrt{{{6}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}} $
$ =\sqrt{36+4+16} $
$ =\sqrt{56} $
$=2\sqrt{14}$ units
Also, $PR=\sqrt{{{\left( 7+2 \right)}^{2}}+{{\left( 0-3 \right)}^{2}}+{{\left( -1-5 \right)}^{2}}}$
$=\sqrt{{{9}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( -6 \right)}^{2}}} $
$ =\sqrt{81+9+36} $
$=\sqrt{126}$
$=3\sqrt{14}$ units.
Notice that, $PQ+QR=\sqrt{14}+2\sqrt{14}=3\sqrt{14}=PR$.
Thus, the points lie in the same line.
Hence, the given points are collinear.
3. Verify the following statements:
(i) $\left( \mathbf{0,7,-10} \right)\mathbf{,}\left( \mathbf{1,6,-6} \right)$ and $\left( \mathbf{4},\mathbf{9},-\mathbf{6} \right)$ are the vertices of an isosceles triangle.
Ans: Recall that, in an isosceles triangle any two sides are of equal length.
Now, let the given points are $P\left( 0,7,-10 \right)$, $Q\left( 1,6,-6 \right)$ and $R\left( 4,9,-6 \right)$.
Then, $PQ=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 6-7 \right)}^{2}}+{{\left( -6+10 \right)}^{2}}}$
$=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{4}^{2}}}$
$=\sqrt{1+1+16}$
$ =\sqrt{18} $
$=3\sqrt{2}$ units.
$QR=\sqrt{{{\left( 4-1 \right)}^{2}}+{{\left( 9-6 \right)}^{2}}+{{\left( -6+6 \right)}^{2}}}$
$ =\sqrt{{{3}^{2}}+{{3}^{2}}+{{0}^{2}}}$
$ =\sqrt{9+9}$
$ =\sqrt{18}$
$=3\sqrt{2}$ units
Also, $RP=\sqrt{{{\left( 0-4 \right)}^{2}}+{{\left( 7-9 \right)}^{2}}+{{\left( -10+6 \right)}^{2}}}$
$ =\sqrt{{{\left( -4 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}} $
$=\sqrt{16+4+16} $
$=\sqrt{36}$
$=6$ units.
Note that, $PQ=QR\ne RP$
Hence, the provided points are the vertices of an isosceles triangle.
(ii) $\left( \mathbf{0},\mathbf{7},\mathbf{10} \right),\left( -\mathbf{1},\mathbf{6},\mathbf{6} \right)$ and $\left( -\mathbf{4},\mathbf{9},\mathbf{6} \right)$ are the vertices of a right-angled triangle.
Ans: Recall that, according to the Pythagorean theorem, a triangle is said to be a right-angled if the sum of the squares of two sides equal to the square of the third side.
Now, let the given points are $P\left( 0,7,-10 \right)$, $Q\left( 1,6,-6 \right)$ and $R\left( 4,9,-6 \right)$.
Then, $PQ=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 6-7 \right)}^{2}}+{{\left( -6+10 \right)}^{2}}}$
$=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{4}^{2}}}$
$=\sqrt{1+1+16}$
$ =\sqrt{18}$
$=3\sqrt{2}$ units.
$ QR=\sqrt{{{\left( 4-1 \right)}^{2}}+{{\left( 9-6 \right)}^{2}}+{{\left( -6+6 \right)}^{2}}}$
$ =\sqrt{{{3}^{2}}+{{3}^{2}}+{{0}^{2}}} $
$ =\sqrt{9+9} $
$ =\sqrt{18} $
$=3\sqrt{2}$ units
Also, $RP=\sqrt{{{\left( 0-4 \right)}^{2}}+{{\left( 7-9 \right)}^{2}}+{{\left( -10+6 \right)}^{2}}}$
$=\sqrt{{{\left( -4 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}}$
$ =\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$ units.
Now, note that,
$ P{{Q}^{2}}+Q{{R}^{2}}={{\left( 3\sqrt{2} \right)}^{2}}+{{\left( 3\sqrt{2} \right)}^{2}}$
$ =18+18$
$ =36 $
$ ={{\left( RP \right)}^{2}}$
That is, $P{{Q}^{2}}+Q{{R}^{2}}=R{{P}^{2}}$.
Hence, according to the Pythagorean theorem, the given points form a right-angled triangle.
(iii) $\left( -\mathbf{1},\mathbf{2},\mathbf{1} \right),\left( \mathbf{1},-\mathbf{2},\mathbf{5} \right),\left( \mathbf{4},-\mathbf{7},\mathbf{8} \right)$ and $\left( \mathbf{2},-\mathbf{3},\mathbf{4} \right)$ are the vertices of a parallelogram.
Ans: Recall that, a quadrilateral is said to be a parallelogram if the opposite sides are equal.
Now, suppose that, the given points are $P\left( -1,2,1 \right)$, $Q\left( 1,-2,5 \right)$, $R\left( 4,-7,8 \right)$, and $S\left( 2,-3,4 \right)$.
Then, $PQ=\sqrt{{{\left( 1+1 \right)}^{2}}+{{\left( -2-2 \right)}^{2}}+{{\left( 5-1 \right)}^{2}}}$
$=\sqrt{{{2}^{2}}+{{\left( -4 \right)}^{2}}+{{4}^{2}}}$
$ =\sqrt{4+16+16}$
$=\sqrt{36}$
$=6$ units.
$QR=\sqrt{{{\left( 4-1 \right)}^{2}}+{{\left( -7+2 \right)}^{2}}+{{\left( 8-5 \right)}^{2}}}$
$=\sqrt{{{3}^{2}}+{{\left( -5 \right)}^{2}}+{{3}^{2}}}$
$ =\sqrt{9+25+9}$
$=\sqrt{43}$ units
$RS=\sqrt{{{\left( 2-4 \right)}^{2}}+{{\left( -3+7 \right)}^{2}}+{{\left( 4-8 \right)}^{2}}}$
$ =\sqrt{{{\left( -2 \right)}^{2}}+{{4}^{2}}+{{\left( -4 \right)}^{2}}} $
$ =\sqrt{4+16+16} $
$=\sqrt{36}$
$=6$ units
Also, $SP=\sqrt{{{\left( -1-2 \right)}^{2}}+{{\left( 2+3 \right)}^{2}}+{{\left( 1-4 \right)}^{2}}}$
$ =\sqrt{{{\left( -3 \right)}^{2}}+{{5}^{2}}+{{\left( -3 \right)}^{2}}}$
$ =\sqrt{9+25+9}$
$=\sqrt{43}$ units.
Therefore, we have
$PQ=RS=6$ units and $QR=SP=\sqrt{43}$ units.
Thus, in the quadrilateral $PQRS$, the opposite sides are equal.
Hence, $PQRS$ is a parallelogram, that is, the provided points are the vertices of a parallelogram.
4. Find the equation of the set of points which are equidistant from the points $\left( \mathbf{1},\mathbf{2},\mathbf{3} \right)$ and $\left( \mathbf{3},\mathbf{2},-\mathbf{1} \right)$.
Ans: Suppose that, the points $A\left( 1,2,3 \right)$ and $B\left( 3,2,-1 \right)$ are equidistant from the point $P\left( x,y,z \right)$.
Then, we have, $AP=BP$
$\Rightarrow A{{P}^{2}}=B{{P}^{2}}$
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}={{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}$
$\Rightarrow{{x}^{2}}-2x+1+{{y}^{2}}-4y+4+{{z}^{2}}-6z+9={{x}^{2}}-6x+9+{{y}^{2}}-4y+4+{{z}^{2}}+2z+1 $
$ \Rightarrow -2x-4y-6z+14=-6x-4y+2z+14$
$ \Rightarrow -2x-6z+6x-2z=0$
$ \Rightarrow 4x-8z=0$
$\Rightarrow x-2z=0$
Hence, the equation of the set of points that are equidistant from the given points is given by
$x-2z=0$.
5. Find the equation of the set of points $\mathbf{P}$, the sum of whose distances from $\mathbf{A}\left( \mathbf{4},\mathbf{0},\mathbf{0} \right)$ and $\mathbf{B}\left( -\mathbf{4},\mathbf{0},\mathbf{0} \right)$ is equal to $\mathbf{10}$.
Ans: Suppose that, the points $A\left( 4,0,0 \right)$ and $B\left( -4,0,0 \right)$ are equidistant from the point $P\left( x,y,z \right)$.
Then, by the given condition, we have
$AP+BP=10$
$\Rightarrow \sqrt{{{\left( x-4 \right)}^{2}}+{{\left( y-0 \right)}^{2}}+{{\left( z-0 \right)}^{2}}}+\sqrt{{{\left( x+4 \right)}^{2}}+{{\left( y-0 \right)}^{2}}+{{\left( z-0 \right)}^{2}}}=10$
$\Rightarrow \sqrt{{{\left( x-4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}=10-\sqrt{{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Squaring both sides of the equation, yields
${{\left( x-4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=100-20\sqrt{{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}+{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}$
$\Rightarrow {{\left( x-4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=100-20\sqrt{{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}+{{x}^{2}}+8x+16+{{y}^{2}}+{{z}^{2}}$
$\Rightarrow 20\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+8x+16}=100+16x$
$ \Rightarrow 5\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+8x+16}=25+4x$
Again, squaring both sides of the equation, gives
$25\left( {{x}^{2}}+8x+16+{{y}^{2}}+{{z}^{2}} \right)=625+16{{x}^{2}}+200x$
$\Rightarrow 25{{x}^{2}}+200x+400+25{{y}^{2}}+25{{z}^{2}}=625+16{{x}^{2}}+200x$
$\Rightarrow 9{{x}^{2}}+25{{y}^{2}}+25{{z}^{2}}-225=0$
Hence, the equation of the set of points, the sum of whose distances from the given points is equal to $10$, is given by
$9{{x}^{2}}+25{{y}^{2}}+25{{z}^{2}}-225=0$.
Exercise 11.3
1. Find the coordinates of the point which divides the line segment joining the points $\left( \text{-2,3,5} \right)$ and $\left( \text{1,-4,6} \right)$ in the ratio
(i) $\text{2:3}$ internally,
Ans: If $\text{R}$ is the point that divides the line segment joining the points $\text{P}\left( {{\text{x}}_{1}},{{\text{y}}_{1}},{{\text{z}}_{1}} \right)$ and $\text{Q}\left( {{\text{x}}_{2}},{{\text{y}}_{2}},{{\text{z}}_{2}} \right)$ internally, then the coordinates of the point $\text{R}$ will be,
$\left( \frac{\text{m}{{\text{x}}_{2}}\text{+n}{{\text{x}}_{1}}}{\text{m+n}},\text{ }\frac{\text{m}{{\text{y}}_{2}}\text{+n}{{\text{y}}_{1}}}{\text{m+n}},\text{ }\frac{\text{m}{{\text{z}}_{2}}\text{+n}{{\text{z}}_{1}}}{\text{m+n}} \right)$
We have, the point $\text{R}$ dividing the line segment joining the points $\left( \text{-2,3,5} \right)$ and $\left( \text{1,-4,6} \right)$ internally in the ratio $\text{2:3}$
$\text{x=}\frac{\text{2}\left( \text{1} \right)\text{+3}\left( \text{-2} \right)}{\text{2+3}}$
$\text{y=}\frac{\text{2}\left( \text{-4} \right)\text{+3}\left( \text{3} \right)}{\text{2+3}}$
$\text{z=}\frac{\text{2}\left( \text{6} \right)\text{+3}\left( \text{5} \right)}{\text{2+3}}$
On solving we get,
$\text{x = }\frac{\text{-4}}{\text{5}}$
$\text{y = }\frac{\text{1}}{\text{5}}$
$\text{z = }\frac{\text{27}}{\text{5}}$
Therefore, the coordinates we obtain are, $\left( \frac{\text{-4}}{\text{5}},\frac{\text{1}}{\text{5}},\frac{\text{27}}{\text{5}} \right)$
(ii) $\text{2:3}$ externally,
Ans: If $\text{R}$ is the point that divides the line segment joining the points $\text{P}\left( {{\text{x}}_{1}},{{\text{y}}_{1}},{{\text{z}}_{1}} \right)$ and $\text{Q}\left( {{\text{x}}_{2}},{{\text{y}}_{2}},{{\text{z}}_{2}} \right)$ externally, then the coordinates of the point $\text{R}$ will be,
$\left( \frac{\text{m}{{\text{x}}_{2}}\text{-n}{{\text{x}}_{1}}}{\text{m-n}},\text{ }\frac{\text{m}{{\text{y}}_{2}}\text{-n}{{\text{y}}_{1}}}{\text{m-n}},\text{ }\frac{\text{m}{{\text{z}}_{2}}\text{-n}{{\text{z}}_{1}}}{\text{m-n}} \right)$
We have, the point $\text{R}$ dividing the line segment joining the points $\left( \text{-2,3,5} \right)$ and $\left( \text{1,-4,6} \right)$ externally in the ratio $\text{2:3}$
$\text{x=}\frac{\text{2}\left( \text{1} \right)\text{-3}\left( \text{-2} \right)}{\text{2-3}}$
$\text{y=}\frac{\text{2}\left( \text{-4} \right)\text{-3}\left( \text{3} \right)}{\text{2-3}}$
$\text{z=}\frac{\text{2}\left( \text{6} \right)\text{-3}\left( \text{5} \right)}{\text{2-3}}$
On solving we get,
$\text{x = -8}$
$\text{y = 17}$
$\text{z = 3}$
Therefore, the coordinates we obtain are, $\left( \text{-8},\text{17},\text{3} \right)$
2. Given that $\text{P}\left( \text{3,2,-4} \right)$, $\text{Q}\left( \text{5,4,-6} \right)$ and $\text{R}\left( \text{9,8,-10} \right)$ are collinear. Find the ratio in which $\text{Q}$ divides $\text{PR}$.
Ans: Let the ratio in which the point $\text{Q}$ divides the line segment joining the points $\text{P}\left( \text{3,2,-4} \right)$ and $\text{R}\left( \text{9,8,-10} \right)$ be $\text{k:1}$.
Using section formula,
$\left( \text{5,4,-6} \right)\text{ = }\left( \frac{\text{k}\left( \text{9} \right)\text{+3}}{\text{k+1}},\text{ }\frac{\text{k}\left( 8 \right)\text{+2}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{-10} \right)-4}{\text{k+1}} \right)$
$\frac{\text{9k+3}}{\text{k+1}}\text{ = 5}$
$\text{9k+3 = 5k+5}$
$\text{4k = 2}$
$\text{k = }\frac{\text{2}}{\text{4}}$
$\text{k = }\frac{\text{1}}{\text{2}}$
Therefore, the ratio in which the point $\text{Q}$ divides the line segment joining the points $\text{P}\left( \text{3,2,-4} \right)$ and $\text{R}\left( \text{9,8,-10} \right)$ is $\text{1:2}$.
3. Find the ratio in which $\text{YZ}$-plane divides the line segment formed by joining the points, $\left( \text{2,4,7} \right)$ and $\left( \text{3,-5,8} \right)$.
Ans: Let the ratio in which the $\text{YZ}$-plane divides the line segment joining the points $\left( \text{-2,4,7} \right)$ and $\left( \text{3,-5,8} \right)$ be $\text{k:1}$.
Using section formula,
$\left( \text{0,y,z} \right)\text{ = }\left( \frac{\text{k}\left( \text{3} \right)\text{-2}}{\text{k+1}},\text{ }\frac{\text{k}\left( -5 \right)\text{+4}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{8} \right)+7}{\text{k+1}} \right)$
The $\text{x}$ coordinate is $\text{0}$ on $\text{YZ}$-plane,
$\frac{\text{3k-2}}{\text{k+1}}\text{ = 0}$
$\text{3k-2 = 0}$
$\text{3k = 2}$
$\text{k = }\frac{\text{2}}{\text{3}}$
Therefore, the ratio in which the $\text{YZ}$-plane divides the line segment joining the points $\left( \text{-2,4,7} \right)$ and $\left( \text{3,-5,8} \right)$ is $\text{2:3}$.
4. Using section formula, show that the points, $\text{A}\left( \text{2,-3,4} \right)$, $\text{B}\left( \text{-1,2,1} \right)$ and $\text{C}\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$ are collinear.
Ans: We are given three points $\text{A}\left( \text{2,-3,4} \right)$, $\text{B}\left( \text{-1,2,1} \right)$ and $\text{C}\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$
Let $\text{P}$ is point which divides the line segment $\text{AB}$in the ratio $\text{k:1}$.
Using section formula,
$\text{ }\left( \frac{\text{k}\left( \text{-1} \right)\text{+2}}{\text{k+1}},\text{ }\frac{\text{k}\left( 2 \right)\text{-3}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{1} \right)+4}{\text{k+1}} \right)$
The value of $\text{k}$ such that the point $\text{P}$ coincides with point $\text{C}$ will be,
$\frac{\text{-k+2}}{\text{k+1}}\text{ = 0}$
$\text{2-k = 0}$
$\text{-k = -2}$
$\text{k = 2}$
Now checking for $\text{k = 2}$.
The coordinates of point $\text{P}$ are $\text{ }\left( \frac{2\left( \text{-1} \right)\text{+2}}{\text{2+1}},\text{ }\frac{2\left( 2 \right)\text{-3}}{\text{2+1}},\text{ }\frac{2\left( \text{1} \right)+4}{\text{2+1}} \right)$
On solving, the coordinates of point $\text{P}$ are, $\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$
Therefore, the point $\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$ divides $\text{AB}$in the ratio $\text{2:1}$. Also, the point is same as point $\text{C}$.
Hence, proved that the points $\text{A}$, $\text{B}$ and $\text{C}$ are collinear.
5. Find the coordinates of the points which trisect the line segment joining the points, $\text{P}\left( \text{4,2,-6} \right)$ and $\text{Q}\left( \text{10,-16,6} \right)$.
Ans: Let $\text{A}$ and $\text{B}$ are the points which trisect the line segment joining the points $\text{P}\left( \text{4,2,-6} \right)$ and $\text{Q}\left( \text{10,-16,6} \right)$.
(Image Will Be Updated Soon)
The point $\text{A}$ divides the line segment $\text{PQ}$ in the ratio of $\text{1:2}$.
Using section formula,
$\text{A}\left( \text{x,y,z} \right)\text{=}\left( \frac{\text{1}\left( \text{10} \right)\text{+2}\left( \text{4} \right)}{\text{1+2}}\text{, }\frac{\text{1}\left( \text{-16} \right)\text{+2}\left( \text{2} \right)}{\text{1+2}}\text{, }\frac{\text{1}\left( \text{6} \right)\text{+2}\left( \text{-4} \right)}{\text{1+2}} \right)\text{ }$
$\text{A}\left( \text{x,y,z} \right)\text{=}\left( \text{6,-4,-2} \right)$
Similarly, the point $\text{B}$ divides the line segment $\text{PQ}$ in the ratio of $\text{2:1}$.
$\text{B}\left( \text{x,y,z} \right)=\left( \frac{\text{2}\left( \text{10} \right)\text{+1}\left( \text{4} \right)}{\text{2+1}},\text{ }\frac{\text{2}\left( \text{-16} \right)\text{+1}\left( \text{2} \right)}{\text{2+1}},\text{ }\frac{\text{2}\left( \text{6} \right)\text{+1}\left( \text{-4} \right)}{\text{2+1}} \right)\text{ }$
$\text{B}\left( \text{x,y,z} \right)\text{=}\left( \text{8,-10,2} \right)$
Therefore, the point $\left( \text{6,-4,-2} \right)$ and $\left( \text{8,-10,2} \right)$ are the points which trisect the line segment joining the points $\text{P}\left( \text{4,2,-6} \right)$ and $\text{Q}\left( \text{10,-16,6} \right)$.
Miscellaneous Exercise
1. Three vertices of a parallelogram $\text{ABCD}$ are $\text{A}\left( \text{3,-1,2} \right)$, $\text{B}\left( \text{1,2,-4} \right)$ and $\text{C}\left( \text{-1,1,2} \right)$. Find the coordinates of the fourth vertex.
Ans: We are given the three vertices of a parallelogram $\text{ABCD}$ are $\text{A}\left( \text{3,-1,2} \right)$, $\text{B}\left( \text{1,2,-4} \right)$ and $\text{C}\left( \text{-1,1,2} \right)$.
Let the coordinates of the fourth vertex of the parallelogram $\text{ABCD}$ be $\text{D}\left( \text{x,y,z} \right)$.
(Image Will Be Updated Soon)
According to the property of parallelogram, the diagonals of the parallelogram bisect each other.
In this parallelogram $\text{ABCD}$, $\text{AC}$ and $\text{BD}$ at point $\text{O}$.
So,
$\text{Mid-point of AC = Mid-point of BD}$
$\left( \frac{\text{3-1}}{\text{2}},\text{ }\frac{\text{-1+1}}{\text{2}},\text{ }\frac{\text{2+2}}{\text{2}} \right)\text{ = }\left( \frac{\text{x+1}}{\text{2}},\text{ }\frac{\text{y+1}}{\text{2}},\text{ }\frac{\text{z-4}}{\text{2}} \right)$
$\left( \text{1,0,2} \right)\text{ = }\left( \frac{\text{x+1}}{\text{2}},\text{ }\frac{\text{y+1}}{\text{2}},\text{ }\frac{\text{z-4}}{\text{2}} \right)$
$\frac{\text{x+1}}{\text{2}}\text{ = 1}$
$\frac{\text{y+2}}{\text{2}}\text{ = 0}$
$\frac{\text{z-4}}{\text{2}}\text{ = 2}$
We get, $\text{x = 1}$, $\text{y = 2}$ and $\text{z = 8}$
Therefore, the coordinates of the fourth vertex of the parallelogram $\text{ABCD}$ are $\text{D}\left( \text{1,-2,8} \right)$.
2. Find the lengths of the medians of the triangle with $\text{A}\left( \text{0,0,6} \right)$, $\text{B}\left( \text{0,4,0} \right)$ and $\text{C}\left( \text{6,0,0} \right)$.
Ans: For the given triangle $\text{ABC}$. Let $\text{AD}$, $\text{BE}$ and $\text{CF}$ are the medians:
(Image Will Be Updated Soon)
We know that, median divides the line segment into two equal parts, so $\text{D}$ is the midpoint of $\text{BC}$, therefore,
$\text{Coordinates of point D = }\left( \frac{\text{0+6}}{\text{2}},\text{ }\frac{\text{4+0}}{\text{2}},\text{ }\frac{\text{0+0}}{\text{2}} \right)$
$\text{Coordinates of point D = }\left( \text{3,2,0} \right)$
$\text{AD = }\sqrt{{{\left( \text{0-3} \right)}^{\text{2}}}\text{+}{{\left( \text{0-2} \right)}^{\text{2}}}\text{+}{{\left( \text{6-0} \right)}^{\text{2}}}}$
$\text{AD = }\sqrt{\text{9+4+36}}$
$\text{AD = }\sqrt{\text{49}}$
$\text{AD = 7}$
Similarly, $\text{E}$ is the midpoint of $\text{AC}$,
$\text{Coordinates of point E = }\left( \frac{\text{0+6}}{\text{2}},\text{ }\frac{\text{0+0}}{\text{2}},\text{ }\frac{\text{0+6}}{\text{2}} \right)$
$\text{Coordinates of point E = }\left( \text{3,0,3} \right)$
$\text{AC = }\sqrt{{{\left( \text{3-0} \right)}^{\text{2}}}\text{+}{{\left( \text{0-4} \right)}^{\text{2}}}\text{+}{{\left( \text{3-0} \right)}^{\text{2}}}}$
$\text{AC = }\sqrt{\text{9+16+9}}$
$\text{AC = }\sqrt{\text{34}}$
Similarly, $\text{F}$ is the midpoint of $\text{AB}$,
$\text{Coordinates of point F = }\left( \frac{\text{0+0}}{\text{2}},\text{ }\frac{\text{0+4}}{\text{2}},\text{ }\frac{\text{6+0}}{\text{2}} \right)$
$\text{Coordinates of point F = }\left( \text{0,2,3} \right)$
$\text{CF = }\sqrt{{{\left( \text{6-0} \right)}^{\text{2}}}\text{+}{{\left( \text{0-2} \right)}^{\text{2}}}\text{+}{{\left( \text{0-3} \right)}^{\text{2}}}}$
$\text{CF = }\sqrt{\text{36+4+9}}$
$\text{CF = }\sqrt{\text{49}}$
$\text{CF = 7}$
Therefore, the lengths of the medians of the triangle $\text{ABC}$ we obtain are, $\text{7, }\sqrt{\text{34}}\text{, 7}$
3. If the origin is the centroid of the triangle $\text{PQR}$ with vertices $\text{P}\left( \text{2a,2,6} \right)$, $\text{Q}\left( \text{-4,3b,-10} \right)$ and $\text{R}\left( \text{8,14,2c} \right)$, then find the values of $\text{a}$, $\text{b}$ and $\text{c}$
Ans: The given triangle $\text{PQR}$
(Image Will Be Updated Soon)
We know that the coordinates of the centroid of triangle with the vertices $\left( {{\text{x}}_{1}},{{\text{y}}_{1}},{{\text{z}}_{1}} \right)$, $\left( {{\text{x}}_{2}},{{\text{y}}_{2}},{{\text{z}}_{2}} \right)$ and $\left( {{\text{x}}_{3}},{{\text{y}}_{3}},{{\text{z}}_{3}} \right)$ are,
$\frac{{{\text{x}}_{\text{1}}}\text{+}{{\text{x}}_{\text{2}}}\text{+}{{\text{x}}_{\text{3}}}}{\text{3}}=\frac{{{\text{y}}_{\text{1}}}\text{+}{{\text{y}}_{\text{2}}}\text{+}{{\text{y}}_{\text{3}}}}{\text{3}}=\frac{{{\text{z}}_{\text{1}}}\text{+}{{\text{z}}_{\text{2}}}\text{+}{{\text{z}}_{\text{3}}}}{\text{3}}$
For triangle $\text{PQR}$, the coordinates will be,
$\text{ }\!\!\Delta\!\!\text{ PQR = }\frac{\text{2a-4+8}}{\text{3}}=\frac{\text{2+3b+14}}{\text{3}}=\frac{\text{6-10+2c}}{\text{3}}$
$\text{ }\!\!\Delta\!\!\text{ PQR = }\frac{\text{2a+4}}{\text{3}}=\frac{\text{3b+16}}{\text{3}}=\frac{\text{2c-4}}{\text{3}}$
Now, we are given that centroid is the origin,
$\frac{\text{2a+4}}{\text{3}}\text{ = 0}$
$\frac{\text{3b+16}}{\text{3}}\text{ = 0}$
$\frac{\text{2c-4}}{\text{3}}\text{ = 0}$
$\text{a = -2}$,
$\text{b = -}\frac{\text{16}}{\text{3}}$
$\text{c = 2}$
Therefore, we obtain the values as $\text{a = -2}$, $\text{b = -}\frac{\text{16}}{\text{3}}$ and $\text{c = 2}$.
4. Find the coordinates of the point on $\text{y-axis}$ which are at a distance of $\text{5}\sqrt{\text{2}}$ from the point $\text{P}\left( \text{3,-2,5} \right)$
Ans: For the point to be on $\text{x-axis}$ the $\text{y-coordinate}$ and $\text{z-coordinate}$ become zero.
Let the point on $\text{y-axis}$ at a distance of $\text{5}\sqrt{\text{2}}$ from point $\text{P}\left( \text{3,-2,5} \right)$ be $\text{A}\left( \text{0,b,0} \right)$,
We have, $\text{AP = 5}\sqrt{\text{2}}$
Using distance formula,
$\text{A}{{\text{P}}^{\text{2}}}\text{ = 50}$
${{\left( \text{3-0} \right)}^{\text{2}}}\text{+}{{\left( \text{-2-b} \right)}^{\text{2}}}\text{+}{{\left( \text{5-0} \right)}^{\text{2}}}\text{ = 50}$
$\text{9+4+}{{\text{b}}^{\text{2}}}\text{+4b+25 = 50}$
${{\text{b}}^{\text{2}}}\text{+4b-12 = 0}$
${{\text{b}}^{\text{2}}}\text{+6b-2b-12 = 0}$
$\left( \text{b+6} \right)\left( \text{b-2} \right)\text{ = 0}$
$\text{b = -6}$ or $\text{b = 2}$
The coordinate of the points is $\left( \text{0,2,0} \right)$ and $\left( \text{0,-6,0} \right)$
5. A point $\text{R}$ with $\text{x-coordinate}$ $\text{4}$ lies on the line segment joining the points $\text{P}\left( \text{2,-3,4} \right)$ and $\text{Q}\left( \text{8,0,10} \right)$. Find the coordinates of the point $\text{R}$.
Ans: Let $\text{R}$ is point which divides the line segment $\text{PQ}$in the ratio $\text{k:1}$.
Using section formula,
$\text{ }\left( \frac{\text{k}\left( \text{8} \right)\text{+2}}{\text{k+1}},\text{ }\frac{\text{k}\left( 0 \right)\text{-3}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{10} \right)+4}{\text{k+1}} \right)\text{ = }\left( \frac{\text{8k+2}}{\text{k+1}},\text{ }\frac{-3}{\text{k+1}},\text{ }\frac{\text{10k+4}}{\text{k+1}} \right)$
The value of $\text{x-coordinate}$ of the point $\text{R}$ is $\text{4}$,
$\frac{\text{8k+2}}{\text{k+1}}\text{ = 4}$
$\text{8k+2 = 4k+4}$
$\text{4k = 2}$
$\text{k = }\frac{\text{1}}{\text{2}}$
So, the coordinates of the point $\text{R}$ are,
$\left( \text{4,}\frac{\text{-3}}{\frac{\text{1}}{\text{2}}\text{+1}}\text{,}\frac{\text{10}\left( \frac{\text{1}}{\text{2}} \right)\text{+4}}{\frac{\text{1}}{\text{2}}\text{+1}} \right)\text{ = }\left( \text{4,-2,6} \right)$
6. If $\text{A}$ and $\text{B}$ be the points $\left( \text{3,4,5} \right)$ and $\left( \text{-1,3,-7} \right)$ respectively, find the equation of the set of points $\text{P}$ such that $\text{P}{{\text{A}}^{\text{2}}}\text{+P}{{\text{B}}^{\text{2}}}\text{ = }{{\text{k}}^{\text{2}}}$, where $\text{k}$ is a constant.
Ans: Let the coordinates of point $\text{P}$ be $\left( \text{x,y,z} \right)$.
Using distance formula we get,
$\text{P}{{\text{A}}^{\text{2}}}\text{=}{{\left( \text{x-3} \right)}^{\text{2}}}\text{+}{{\left( \text{y-4} \right)}^{\text{2}}}\text{+}{{\left( \text{z-5} \right)}^{\text{2}}}$
$\text{P}{{\text{A}}^{\text{2}}}\text{ = }{{\text{x}}^{\text{2}}}\text{+9-6x+}{{\text{y}}^{\text{2}}}\text{+16-8y+}{{\text{z}}^{\text{2}}}\text{+25-10z}$
$\text{P}{{\text{A}}^{\text{2}}}\text{ = }{{\text{x}}^{\text{2}}}\text{-6x+}{{\text{y}}^{\text{2}}}\text{-8y+}{{\text{z}}^{\text{2}}}\text{-10z+50}$
Similarly,
$\text{P}{{\text{B}}^{\text{2}}}\text{ = }{{\left( \text{x-1} \right)}^{\text{2}}}\text{+}{{\left( \text{y-3} \right)}^{\text{2}}}\text{+}{{\left( \text{z-7} \right)}^{\text{2}}}$
$\text{P}{{\text{A}}^{\text{2}}}\text{ = }{{\text{x}}^{\text{2}}}\text{-2x+}{{\text{y}}^{\text{2}}}\text{-6y+}{{\text{z}}^{\text{2}}}\text{-14z+59}$
We are given that,
$\text{P}{{\text{A}}^{\text{2}}}\text{+P}{{\text{B}}^{\text{2}}}\text{ = }{{\text{k}}^{\text{2}}}$
So,
$\left( {{\text{x}}^{\text{2}}}\text{-6x+}{{\text{y}}^{\text{2}}}\text{-8y+}{{\text{z}}^{\text{2}}}\text{-10z+50} \right)\text{+}\left( {{\text{x}}^{\text{2}}}\text{-2x+}{{\text{y}}^{\text{2}}}\text{-6y+}{{\text{z}}^{\text{2}}}\text{-14z+59} \right)\text{ = }{{\text{k}}^{2}}$
$\text{2}{{\text{x}}^{\text{2}}}\text{+2}{{\text{y}}^{\text{2}}}\text{+2}{{\text{z}}^{\text{2}}}\text{-4x-14y+14z+109 =}\ {{\text{k}}^{\text{2}}}$
$\text{2}\left( {{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{-2x-7y+7z} \right)\text{ = }{{\text{k}}^{\text{2}}}\text{-109}$
${{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{-2x-7y+7z = }\frac{{{\text{k}}^{\text{2}}}\text{-109}}{\text{2}}$
Therefore, the equation is as follows ${{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{-2x-7y+2z = }\frac{{{\text{k}}^{\text{2}}}\text{-109}}{\text{2}}$
NCERT Solutions for Class 11 Maths Chapter 11 - Introduction to Three Dimensional Geometry
Let us consider a room with a rectangular floor.
(Image to be added soon)
Let $OX$ and $OY$ be two adjacent edges of the floor, which we take as x-axis & y-axis. Then for locating a point $p$ exactly on the floor we draw perpendiculars $PM$ & $PN$ respectively on $OX$ or $OY$ and measure their lengths. The distances $OM ( = PN)$ and $ON ( = PM)$ are called the x- and y-coordinates respectively. $OP$ is the distance of point $P$ from the meeting point $O$ of $OX$ & $OY$, which we call the origin -- this is what is called the 2D Cartesian Coordinate system.
But how can we exactly locate a point like a marking $Q$ made on the dome of a fan hanging from the ceiling fan? For this, we have to draw a line from $P$, perpendicular to the floor, to the marking $Q$ and measure its height. This means we require another line $OZ$ which will be the line pointing to the two adjacent walls where the bottom edges are $OX$ & $OY$. The distance $OZ (=PQ)$ is the $3^{rd}$ coordinate of the point $Q$. The lines $OX, OY$ & $OZ$ are the axes of what we call the 3D Cartesian Coordinate system.
(Image to be added soon)
Here the origin $O$ is the meeting point of the two adjacent walls and the floor. This 3D Cartesian Coordinate system is necessary to locate a point in space-like a balloon floating in the air above the ground, the location of an airplane flying in the sky, or a satellite orbiting the earth.
Coordinates of a Point in Space
Let the origin be $O$ & let the mutually perpendicular lines be $OX, OY$ and $OZ$, taken as X-axis, Y-axis & Z-axis respectively.
(Image to be added soon)
The planes, $YOZ, ZOX$ & $XOY$ are respectively called a y-z plane, z-x plane & xy- plane. These panes known as coordinate planes, divide the space into eight parts, called octants.
Let $p$ be a point in space. Through $P$, we draw planes parallel to the coordinate planes and meet the axes $OX, OY$ & $OZ$ at points $A, B$ & $C$ respectively. We complete the parallelepiped whose coterminous edges are $OA, OB$ & $OC$.
Let $OA = x, OB = y$ & $OC =z$
Then we say that the coordinates of $P$ are $(x, y, z)$. As can be seen from the fi. $x, y, z$ are a distance of point $P$ respectively from $yz, xz$ & $xy$ -plane.
Note:
Any point on the $y-z$ plane will have its x-coordinate equal to zero. Similarly, a point on the $z-x$ plane will have $y = 0$ & a point on the $xy$ plane will have $z = 0$.
Coordinates of the origin are $O(0, 0, 0)$.
Distance Formula in 3D
In 2D coordinate geometry, the distance between two pints $P(x_1,y_1)$ & $Q(x_2,y_2)$ is given by
$PQ = \sqrt{(x_2 -x_1)^2+ (y_2 -y_1)^2}$ similar in a 3D coordinate system, the distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ is given by $AB = \sqrt{(x_2 -x_1)^2+ (y_2 -y_1)^2+(z_2 -z_1)^2}$
Note: Distance of a point $P(x, y, z)$ from the origin $O(0, 0, 0)$ is
$OP = \sqrt{(x -0)^2+ (y-0)^2+(z-0)^2}$
$OP = \sqrt{x^2 + y^2 + z^2}$
Illustrated Example
Example1: Find the distance between the points $A( -2, 1, -3)$ & $B(4, 3, -6)$.
Sol.
Required Distance
$AB = \sqrt {((4-(-1))^2 + (3-1)^2 +(6-(-3))^2}$
$AB = \sqrt{6^ 2+2^2+(-3)^2} = \sqrt{36+4+9} = \sqrt49 = 7\text{units}$
Section Formula
In the 2D coordinate system, if a point $R(\bar{x},\bar{y})$ divides the two joins of the points $P(x_1+y_1)$ &
$Q (x_2 + y_2)$ in the ratio m:n, then
$\bar{x}=\dfrac{mx_2+nx_1}{m + n}, \bar{y}=\dfrac{my_2+ny_1}{m + n}, \bar{z}=\dfrac{mz_2+nz_1}{m + n}$
Note:
The coordinates of the midpoint of the join $P(x_1, y_1, z_1)$ & $Q(z_2, y_2, z_2)$ is given by
(here $m =n$) $\bar{x}=\dfrac{x_2+x_1}{2}, \bar{y}=\dfrac{y_2+y_1}{2}, \bar{z}=\dfrac{z_2+z_1}{2}$
If a point $R(\bar{x}, \bar{y}, \bar{z})$ divides the join of $P(x_1, y_1, z_1)$ & $Q(x_2, y_2, z_2)$ externally, then
$\bar{x}=\dfrac{mx_2+nx_1}{m + n}, \bar{y}=\dfrac{my_2+ny_1}{m + n}, \bar{z}=\dfrac{mz_2+nz_1}{m + n}$
Illustrated Example
Example 2: Find the coordinates of the point which divides the join of the points $P(5, 4, 2)$ &
$Q( -1, -2, 4)$ in ratio $2:3$ .
Sol.
If $R(\bar{x}, \bar{y}, \bar{z})$ be the required point, then $\bar{x}=\dfrac{2(-1)+3 \times 5}{2+3}, \bar{y}=\dfrac{2(-2)+3 > 4}{2+3}, \bar{z}=\dfrac{2 \times 4+3 \times 2}{2+3}$ $ = \dfrac{13}{5} = \dfrac{8}{5} = \dfrac{14}{5}$ $\therefore$ Required points $\left(\dfrac{13}{5}, \dfrac{8}{5},\dfrac{14}{5}\right)$
We Cover All Exercises in the Chapter Given Below:-
EXERCISE 11.1 - 4 Questions with Solutions
EXERCISE 11.2 - 5 Questions with Solutions
MISCELLANEOUS EXERCISE - 4 Questions with Solutions.
Important Study Material Links for Chapter 12: Limits and Derivatives
Introduction to Three Dimensional Geometry Important Questions
Introduction to Three Dimensional Geometry Important Formulas
Introduction to Three Dimensional Geometry NCERT Exemplar Solutions
Introduction to Three Dimensional Geometry RD Sharma Solutions
Introduction to Three Dimensional Geometry RS Aggarwal Solutions
NCERT Class 11 Maths Solutions Chapter-wise Links - Download the FREE PDF
S. No | NCERT Solutions Class 11 Maths All Chapters |
1 | |
2 | |
3 | |
4 | Chapter 4 - Complex Numbers and Quadratic Equations Solutions |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Additional Study Materials for CBSE Class 11 Maths
S.No. | Important Study Material for Maths Class 11 |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on CBSE Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry – NCERT Solutions 2025-26
1. What is the section formula in three-dimensional geometry and how is it used in NCERT Solutions for Class 11 Maths Chapter 11?
The section formula in 3D geometry allows you to find the coordinates of a point dividing a line segment between two points, A(x1, y1, z1) and B(x2, y2, z2), in the ratio m:n. The formula is:
- P = ((mx2 + nx1)/(m+n), (my2 + ny1)/(m+n), (mz2 + nz1)/(m+n))
2. How do the NCERT Solutions for Class 11 Maths Chapter 11 approach distance calculation between two points in 3D space?
The solutions follow the 3D distance formula:
- Distance = √[(x2 – x1)² + (y2 – y1)² + (z2 – z1)²]
3. What common mistakes do students make when using coordinate geometry formulas in three dimensions, and how do the NCERT Solutions help avoid them?
Students often omit or confuse the z-coordinate, misapply signs, or incorrectly use the ratios. The NCERT Solutions highlight every substitution step, clarify the use of negatives and ratios, and encourage visualizing point positions in space, thus preventing calculation errors and conceptual misunderstandings.
4. Why is the concept of octants important in Class 11 Maths Chapter 11, and how are points in different octants identified?
Octants in 3D geometry divide space into eight regions based on the signs of x, y, and z coordinates. Understanding octants helps locate points and analyze their relationships. In NCERT Solutions, a table of sign combinations is often used to determine the octant for any given point, ensuring correct spatial interpretation in exam questions.
5. How do the stepwise solutions for miscellaneous exercises in NCERT Chapter 11 support problem-solving skills for CBSE and JEE?
The miscellaneous exercise solutions include problems integrating multiple concepts—distance, section, collinearity, and geometric properties (such as triangles and parallelograms). Solutions are organized into:
- Breakdown of formulas used
- Logical sequencing of steps
- Diagrams or verbal visualization aids
6. How do you check if three points are collinear in 3D using the NCERT methods?
To check collinearity, the NCERT Solutions apply the distance formula between all pairs and verify if the sum of two segment lengths equals the third, or use the section formula to check if a ratio is consistent across coordinates. Explicit calculation ensures clarity in proofs and answers.
7. What is the role of coordinate planes and axes in three-dimensional geometry problems, according to Class 11 Maths NCERT Solutions?
Coordinate planes (XY, YZ, ZX) and axes (X, Y, Z) are reference surfaces and lines helping to define point locations and solve spatial problems. The NCERT Solutions explain how being on a plane means one of the coordinates is zero (e.g., x = 0 on YZ-plane) and guide students in substituting the correct values during problem-solving.
8. How does one determine the equation of a set of points equidistant from two given points in 3D space as per NCERT Solutions for Class 11?
The solutions set the distances from an unknown point (x, y, z) to each given point equal, then square both sides to form and simplify the resulting equation. This leads to a plane equation that represents all such equidistant points, a method directly aligned with CBSE syllabus problem types.
9. What strategies are provided in NCERT Solutions for thorough revision before board or competitive exams for 3D geometry?
Strategies include:
- Creating formula mind maps for distance, section, and midpoint
- Practicing all solved NCERT examples step-by-step
- Attempting miscellaneous exercise problems without hints
- Reviewing diagrams for spatial understanding
10. How does mastering NCERT Solutions for Class 11 Maths Chapter 11 help build a foundation for higher-level problems in vectors and physics?
Gaining proficiency in 3D coordinate geometry equips students with skills vital for vector analysis and motion problems in physics. These solutions build abilities in calculating positions, distances, and directions in space, which is fundamental for both future mathematics topics and real-world applications.

















