Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 10 Maths Chapter 5 Arithmetic Progressions Exercise 5.4 - 2025-26

ffImage
banner
widget title icon
Latest Updates

Class 10 Maths Chapter 5 Questions and Answers - Free PDF Download

In NCERT Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4, youโ€™ll learn all about arithmetic progressions, especially how to find the sum of their first โ€˜nโ€™ terms. This part of the chapter is packed with problems where you apply formulas, spot patterns, and solve real-life maths scenarios. The step-by-step answers are designed to clear your doubts and help you build strong basics for exams.

toc-symbolTable of Content
toggle-arrow

If you ever get stuck, Vedantuโ€™s easy NCERT Solutions and the downloadable PDF will guide you through each question. These solutions are perfect for last-minute revisions or for clearing up tricky points before a test. And if you need to see the full Class 10 Maths syllabus or more NCERT Solutions, you can always check out the links for extra help.


This chapter carries 4 marks in your CBSE exam, so practising these solutions can really boost your score and confidence in Algebra.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions For Class 10 Maths Chapter 5 Arithmetic Progressions Exercise 5.4 - 2025-26
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
ARITHMETIC PROGRESSIONS in One Shot (๐…๐ฎ๐ฅ๐ฅ ๐‚๐ก๐š๐ฉ๐ญ๐ž๐ซ) CBSE 10 Maths Chapter 5 - ๐Ÿ๐ฌ๐ญ ๐“๐ž๐ซ๐ฆ ๐„๐ฑ๐š๐ฆ | Vedantu
7.1K likes
170.6K Views
4 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Arithmetic Progressions L-2 (Finding Sum of First n Terms of an A.P) CBSE 10 Math Chap 5 | Vedantu
2.5K likes
71.4K Views
4 years ago

Access NCERT Solutions for Maths Class 10 Chapter 5 - Arithmetic Progressions

Exercise 5.4

1. Which term of the A.P. \[\mathbf{121},\mathbf{117},\mathbf{113},...\] is its first negative term?

(Hint: Find $n$ for ${{a}_{n}}  <0$)

Ans: Given A.P. \[\mathbf{121},\mathbf{117},\mathbf{113},...\] 

Its first term is $121$ and the common difference is $117-121=-4$. 

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$.

Therefore the ${{n}^{th}}$ term of the given A.P. is ${{a}_{n}}=121-4\left( n-1 \right)$   โ€ฆ.. (1)

To find negative term, find $n$ such that ${{a}_{n}} <0$  

Hence from (1),

$121-4\left( n-1 \right) <0$

$\Rightarrow 121 <4\left( n-1 \right)$ 

\[\Rightarrow \dfrac{121}{4}+1 < n\]

$\Rightarrow n >\dfrac{125}{4}$ 

$\therefore n >31.25$ 

Therefore, the ${{32}^{nd}}$ term of the given A.P. will be its first negative term.


2. The sum of the third and the seventh terms of an A.P is \[6\] and their product is \[8\]. Find the sum of first sixteen terms of the A.P.

Ans: Given the sum of third and seventh term of A.P., ${{a}_{3}}+{{a}_{7}}=6$  โ€ฆ..(1)

Given the sum of third and seventh term of A.P., ${{a}_{3}}\cdot {{a}_{7}}=8$  โ€ฆ..(2)

We know that the ${{n}^{th}}$ term of the A.P. with first term $a$ and common difference $d$ is given by ${{a}_{n}}=a+\left( n-1 \right)d$. Therefore, 

For $n=3,{{a}_{3}}=a+2d$ 

For $n=7,{{a}_{7}}=a+6d$ 

From (1), ${{a}_{3}}+{{a}_{7}}=\left( a+2d \right)+\left( a+6d \right)$ 

$\Rightarrow 2a+8d=6$ 

$\therefore a+4d=3$   โ€ฆ.. (3)

From (2), ${{a}_{3}}\cdot {{a}_{7}}=\left( a+2d \right)\cdot \left( a+6d \right)$ 

$\therefore {{a}^{2}}+8ad+12{{d}^{2}}=8$   โ€ฆ..(4)

Let us now solve equations (3) and (4) by substituting the value of $a$ from (3) into (4).

${{\left( 3-4d \right)}^{2}}+8d\left( 3-4d \right)+12{{d}^{2}}=8$

$\Rightarrow 9-24d+16{{d}^{2}}+24d-32{{d}^{2}}+12{{d}^{2}}=8$ 

$\Rightarrow -4{{d}^{2}}+1=0$

$\Rightarrow {{d}^{2}}=\dfrac{1}{4}$

$\therefore d=\dfrac{1}{2},-\dfrac{1}{2}$ โ€ฆ..(5)


CASE 1: 

For $d=\dfrac{1}{2}$ 

 Substitute $d=\dfrac{1}{2}$ in (6) we get, $a=1$ โ€ฆ..(6)

Therefore, it is an A.P series with first term $1$ and common difference $\dfrac{1}{2}$. 

We know that the sum of $n$ terms of the A.P. with first term $a$ and common difference $d$ is given by ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$. Therefore, 

${{S}_{16}}=\dfrac{16}{2}\left[ 2+\dfrac{1}{2}\left( 16-1 \right) \right]$

$\Rightarrow {{S}_{16}}=4\left[ 19 \right]$ 

$\therefore {{S}_{16}}=76$ 


CASE 2: 

For $d=-\dfrac{1}{2}$ 

 Substitute $d=-\dfrac{1}{2}$ in (6) we get, $a=5$ โ€ฆ..(7)

Therefore, it is an A.P series with first term $5$ and common difference $-\dfrac{1}{2}$ and hence, 

${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$

$\Rightarrow {{S}_{16}}=\dfrac{16}{2}\left[ 2\left( 5 \right)-\dfrac{1}{2}\left( 16-1 \right) \right]$

$\Rightarrow {{S}_{16}}=4\left[ 5 \right]$ 

$\therefore {{S}_{16}}=20$ 


3. A ladder has rungs \[\mathbf{25}\] cm apart. (See figure). The rungs decrease uniformly in length from \[\mathbf{45}\] cm at the bottom to \[\mathbf{25}\] cm at the top. If the top and bottom rungs are $2\dfrac{1}{2}$ m apart, what is the length of the wood required for the rungs? 

(Hint: Number of Rungs $=\dfrac{250}{25}$)


Ladder with rungs 25cm apart


Ans: Distance between first and last rungs is $2\dfrac{1}{2}m=\dfrac{5}{2}m=250cm$.

Distance between two consecutive rungs is $25cm$.

Therefore, total number of rungs are $\dfrac{250}{25}+1=11$.

Also, we can observe that the length of each rung is decreasing in a uniform order. So, we can conclude that the length of rungs is in A.P. with first term $45$, common difference $-25$ and number of terms $11$.   

We know that the sum of $n$ terms of the A.P. with first term $a$ and last term $l$ is given by ${{S}_{n}}=\dfrac{n}{2}\left[ a+l \right]$. Therefore, 

${{S}_{11}}=\dfrac{11}{2}\left[ 45+25 \right]$

$\Rightarrow {{S}_{11}}=11\left[ 35 \right]$ 

$\therefore {{S}_{11}}=385$

Therefore, the length of the wood required for the rungs is \[385\]cm.


4. The houses of a row are number consecutively from \[1\] to \[49\]. Show that there is a value of \[x\] such that the sum of numbers of the houses preceding the house numbered \[x\] is equal to the sum of the number of houses following it.

Find this value of \[x\].

(Hint \[{{S}_{x-1}}={{S}_{49}}-{{S}_{x}}\])

Ans: Given houses are numbered $1,2,3,4,....$

Clearly, they are numbered in A.P. series with both first term and common difference as $1$.

Now, there is house numbered $x$ such that the sum of numbers of the houses preceding the house numbered \[x\] is equal to the sum of the number of houses following it i.e., \[{{S}_{x-1}}={{S}_{49}}-{{S}_{x}}\]


Presentation of the house number on line


We know that the sum of $n$ terms of the A.P. with first term $a$ and last term $l$ is given by ${{S}_{n}}=\dfrac{n}{2}\left[ a+l \right]$. Therefore, 

\[{{S}_{x-1}}={{S}_{49}}-{{S}_{x}}\]

$\Rightarrow \left\{ \dfrac{\left( x-1 \right)}{2}\left[ 1+\left( x-1 \right) \right] \right\}=\left\{ \dfrac{49}{2}\left[ 1+49 \right] \right\}-\left\{ \dfrac{x}{2}\left[ 1+x \right] \right\}$

$\Rightarrow \dfrac{x\left( x-1 \right)}{2}=49\left[ 25 \right]-\dfrac{x\left( x+1 \right)}{2}$ 

$\Rightarrow x\left( x-1 \right)=2450-x\left( x+1 \right)$

$\Rightarrow 2{{x}^{2}}=2450$

$\therefore x=35$   (Since house number cannot be negative)

Therefore, house number \[35\] is such that the sum of the numbers of houses preceding the house numbered \[35\] is equal to the sum of the numbers of the houses following it.


5. A small terrace at a football ground comprises of \[15\] steps each of which is \[50\] m long and built of solid concrete. Each step has a rise of $\dfrac{1}{4}$m and a tread of $\dfrac{1}{2}$m (See figure) calculate the total volume of concrete required to build the terrace.


Steps with a length of 50m long each


Ans: Given that a football ground comprises of \[15\] steps each of which is \[50\] m long and built of solid concrete. Each step has a rise of $\dfrac{1}{4}$m and a tread of $\dfrac{1}{2}$m. An easy illustration of the problem is depicted below.


Individual step with breadth and width


Here blue step is the lowermost step. Let it be known as step $1$. The volume of step $1$ is $\dfrac{1}{2}\times \dfrac{1}{4}\times 50\text{ }{{m}^{3}}$.

The red step is the second lowermost step. Let it be known as step $2$. The volume of step $2$ is $\dfrac{1}{2}\times \dfrac{1}{2}\times 50\text{ }{{m}^{3}}$.

The green step is the third lower step. Let it be known as step $3$. The volume of step $3$ is $\dfrac{1}{2}\times 1\times 50\text{ }{{m}^{3}}$.  


Steps with increasing height


We can see that the height is increasing with each increasing step by a factor of $\dfrac{1}{4}$, length and width being constant. Hence the volume of each step is increasing by $\dfrac{1}{2}\times \dfrac{1}{4}\times 50\text{ }{{m}^{3}}$.

Therefore, we can conclude that the volume of steps is in A.P. with first term and common difference both as $\dfrac{1}{2}\times \dfrac{1}{4}\times 50=\dfrac{25}{4}\text{ }{{m}^{3}}$.

We know that the sum of $n$ terms of the A.P. with first term $a$ and common difference $d$ is given by ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$. Therefore, 

${{S}_{15}}=\dfrac{15}{2}\left[ 2\left( \dfrac{25}{4} \right)+\left( \dfrac{25}{4} \right)\left( 15-1 \right) \right]$

$\Rightarrow {{S}_{15}}=\dfrac{15}{2}\left( \dfrac{25}{4} \right)\left[ 16 \right]$ 

$\Rightarrow {{S}_{15}}=15\cdot 25\cdot 2$

$\therefore {{S}_{15}}=750$

Therefore, volume of concrete required to build the terrace is $750\text{ }{{m}^{3}}$.


Conclusion

In conclusion, Class 10 Maths Exercise 5.4 has provided a thorough understanding of finding the sum of the first n terms of an arithmetic progression. By learning to apply the sum formula, Sn=n/2(2a+(nโˆ’1)d), students have gained the ability to solve a variety of problems involving arithmetic progressions. Class 10 Exercise 5.4 has also demonstrated the practical applications of AP in solving real-life word problems. 


Class 10 Maths Chapter 5: Exercises Breakdown

Exercise

Number of Questions

Exercise 5.1

4 Questions & Solutions

Exercise 5.2

20 Questions & Solutions

Exercise 5.3

20 Questions & Solutions


CBSE Class 10 Maths Chapter 5 Other Study Materials


Chapter-Specific NCERT Solutions for Class 10 Maths

Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


NCERT Study Resources for Class 10 Maths

For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.

WhatsApp Banner
Best Seller - Grade 10
View More>
Previous
Next

FAQs on NCERT Solutions For Class 10 Maths Chapter 5 Arithmetic Progressions Exercise 5.4 - 2025-26

What are NCERT Solutions for Class 10 Maths Chapter 5 Exercise 5.4?

NCERT Solutions for Class 10 Maths Chapter 5 Exercise 5.4 include step-by-step answers and explanations to help students understand arithmetic progressions. They are aligned with the latest NCERT curriculum.


How does solving Exercise 5.4 help with understanding arithmetic progressions?

Exercise 5.4 provides practice problems that reinforce concepts of arithmetic progressions. Working through these exercises enhances problem-solving skills and clarifies formulas.


Where can I find free PDF solutions for Class 10 Maths Chapter 5?

You can access free PDF solutions for Class 10 Maths Chapter 5 on the Vedantu website. These PDFs include detailed explanations and examples for self-study.

What topics are covered in Class 10 Maths Chapter 5 Exercise 5.4?

Chapter 5 Exercise 5.4 covers various aspects of arithmetic progressions, including formulas and application problems. It emphasizes key concepts for better comprehension.

Can NCERT Solutions for Class 10 Maths Chapter 5 Exercise 5.4 aid in exam preparation?

Yes, NCERT Solutions for this exercise provide clarity and structured practice, helping students prepare effectively for exams by mastering arithmetic progressions.


What is the importance of learning arithmetic progressions in Class 10?

Learning arithmetic progressions is crucial in Class 10 as it forms the foundation for advanced mathematical concepts and problem-solving strategies used in higher studies.


How can Vedantuโ€™s solutions enhance my understanding of Exercise 5.4?

Vedantuโ€™s solutions provide clear, step-by-step guidance on solving problems, making it easier to grasp the concepts of arithmetic progressions and apply them effectively.


What common mistakes should I avoid in Chapter 5 Exercise 5.4?

Common mistakes include miscalculating common differences and misunderstanding series terms. Reviewing NCERT Solutions can help identify and correct these errors.


Are the solutions for Class 10 Maths Chapter 5 Exercise 5.4 aligned with NCERT guidelines?

Yes, the solutions are completely aligned with NCERT guidelines, ensuring that students follow the prescribed curriculum accurately while studying.



What formats are available for the solutions of Chapter 5 Exercise 5.4?

The solutions for Chapter 5 Exercise 5.4 are available online and as a free PDF, allowing students to study anytime, anywhere offline.