
The value of $g$ on the moon is ${\dfrac{1}{6}^{th}}$ of the value of $g$ on earth. A man can jump $1.5m$ high on the earth. He can jump on the moon up to a height of:
A. $9m$
B. $7.5m$
C. $6m$
D. $4.5m$
Answer
204k+ views
Hint Velocity of man on the highest point is zero and we know the height at which man can jump on earth hence we can calculate the initial velocity at which a man jumps on earth. Now the initial velocity of the man remains the same on the moon. Hence using the equation of motion, we can calculate the height to which man can jump on the moon.
Complete Step by step solution
For earth:
Given,
$\Rightarrow$ $a = - g$ (for upward motion)
$\Rightarrow$ $v = 0$ (at highest point)
$\Rightarrow$ $h = 15m$
Now from third equation of motion, we get
${v^2} = {u^2} + 2as$
On putting values, we get
$
0 = {u^2} - 2g(1.5) \\
0 = {u^2} - 3 \times 10 \\
{u^2} = 30 \\
u = \sqrt {30} ......(1) \\
$
For moon:
Given,
$\Rightarrow$ $a = \dfrac{{ - g}}{6}$
$\Rightarrow$ $v = 0$
and, from (1) we get $u = \sqrt {30} m{s^{ - 1}}$
hence using the equation ${v^2} = {u^2} + 2as$ , we get
$
0 = 30 - 2 \times \dfrac{g}{6} \times H \\
H = \dfrac{{180}}{{2g}} \\
H = 9m \\
$
Hence, man can jump to a height of 9m on moon.
Option (A) is correct.
Note We had considered the motion of man as a straight-line motion. Since the equation we had used above is valid only in case of straight-line motion and for constant acceleration. This straight-line motion is also called Linear motion or rectilinear motion.
Complete Step by step solution
For earth:
Given,
$\Rightarrow$ $a = - g$ (for upward motion)
$\Rightarrow$ $v = 0$ (at highest point)
$\Rightarrow$ $h = 15m$
Now from third equation of motion, we get
${v^2} = {u^2} + 2as$
On putting values, we get
$
0 = {u^2} - 2g(1.5) \\
0 = {u^2} - 3 \times 10 \\
{u^2} = 30 \\
u = \sqrt {30} ......(1) \\
$
For moon:
Given,
$\Rightarrow$ $a = \dfrac{{ - g}}{6}$
$\Rightarrow$ $v = 0$
and, from (1) we get $u = \sqrt {30} m{s^{ - 1}}$
hence using the equation ${v^2} = {u^2} + 2as$ , we get
$
0 = 30 - 2 \times \dfrac{g}{6} \times H \\
H = \dfrac{{180}}{{2g}} \\
H = 9m \\
$
Hence, man can jump to a height of 9m on moon.
Option (A) is correct.
Note We had considered the motion of man as a straight-line motion. Since the equation we had used above is valid only in case of straight-line motion and for constant acceleration. This straight-line motion is also called Linear motion or rectilinear motion.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

JEE Main Login 2026 - Step-by-Step Explanation

Find the frictional force between the two blocks in class 11 physics JEE_MAIN

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Other Pages
Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy And Power 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

