Answer
Verified
114.9k+ views
Hint In electric conductors as temperature increases, interatomic vibration also increases which creates difficulty for the electrons to travel inside the electric conductor. But in the case of a semiconductor as the temperature increases the number of charge carriers also increases so as there are more charge carrier resistivity decreases.
Formula used:
${R_{eq}} = {R_1} + {R_2}$
${R_{eq}}$Is the equivalent resistance, ${R_1}$and${R_2}$ are the two resistance connected in series.
$ \Rightarrow R' = R(1 + \alpha \Delta T)$
$R'$Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Complete Step-by-step answer
Let at initial temperature equivalent resistance be ${R_{eq}}$ and resistance of tungsten be ${R_1}$and resistance of germanium be${R_2}$.
Temperature coefficient of resistance for germanium be${\alpha _2}$ and temperature coefficient of resistance for tungsten be${\alpha _1}$.
Given that,
${\alpha _1} = 4.5 \times {10^{ - 3}}^\circ {C^{ - 1}}$
${\alpha _2} = - 5 \times {10^{ - 2}}^\circ {C^{ - 1}}$
As we want that after heating equivalent resistance remains the same.
Therefore equivalent resistance after heating is equal to${R_{eq}}$.
We know that,
$R' = R(1 + \alpha \Delta T)$
$R'$ Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Hence,
The resistance of tungsten and germanium after heating is ${R_1}'$and${R_2}'$ respectively.
Therefore
$ \Rightarrow {R_1}' = {R_1}(1 + {\alpha _1}\Delta T)$
$ \Rightarrow {R_2}' = {R_2}(1 + {\alpha _2}\Delta T)$
From the things we discussed above,
${R_1}' + {R_2}' = {R_1} + {R_2}$
$ \Rightarrow {R_1} + {R_2} = {R_1}(1 + {\alpha _1}\Delta T) + {R_2}(1 + {\alpha _2}\Delta T)$
$ \Rightarrow {R_1} + {R_2} = {R_1} + {R_1}{\alpha _1}\Delta T + {R_2} + {R_2}{\alpha _2}\Delta T$
$ \Rightarrow {R_1}{\alpha _1}\Delta T = - {R_2}{\alpha _2}\Delta T$
On substituting the values
${R_1}(4.5 \times {10^{ - 3}}^\circ {C^{ - 1}})\Delta T = - {R_2}( - 5 \times {10^{ - 2}}^\circ {C^{ - 1}})\Delta T$
It is given in the question that ${R_1} = 100\Omega $
$ \Rightarrow 100(4.5 \times {10^{ - 3}}) = {R_2}(5 \times {10^{ - 2}})$
$ \Rightarrow {R_2} = \dfrac{{100(4.5 \times {{10}^{ - 3}})}}{{5 \times {{10}^{ - 2}}}}$
On solving further,
${R_2} = 9\Omega $
Hence the correct answer to the question is (A) $9\Omega $
Note
Semiconductors are the material whose resistivity lies between the range of electric conductors and electric insulators. Thus they share common traits with both electric conductors and electric insulators. The negative temperature coefficient represents that the material is a semiconductor as its resistance decreases on increase in temperature.
Formula used:
${R_{eq}} = {R_1} + {R_2}$
${R_{eq}}$Is the equivalent resistance, ${R_1}$and${R_2}$ are the two resistance connected in series.
$ \Rightarrow R' = R(1 + \alpha \Delta T)$
$R'$Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Complete Step-by-step answer
Let at initial temperature equivalent resistance be ${R_{eq}}$ and resistance of tungsten be ${R_1}$and resistance of germanium be${R_2}$.
Temperature coefficient of resistance for germanium be${\alpha _2}$ and temperature coefficient of resistance for tungsten be${\alpha _1}$.
Given that,
${\alpha _1} = 4.5 \times {10^{ - 3}}^\circ {C^{ - 1}}$
${\alpha _2} = - 5 \times {10^{ - 2}}^\circ {C^{ - 1}}$
As we want that after heating equivalent resistance remains the same.
Therefore equivalent resistance after heating is equal to${R_{eq}}$.
We know that,
$R' = R(1 + \alpha \Delta T)$
$R'$ Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Hence,
The resistance of tungsten and germanium after heating is ${R_1}'$and${R_2}'$ respectively.
Therefore
$ \Rightarrow {R_1}' = {R_1}(1 + {\alpha _1}\Delta T)$
$ \Rightarrow {R_2}' = {R_2}(1 + {\alpha _2}\Delta T)$
From the things we discussed above,
${R_1}' + {R_2}' = {R_1} + {R_2}$
$ \Rightarrow {R_1} + {R_2} = {R_1}(1 + {\alpha _1}\Delta T) + {R_2}(1 + {\alpha _2}\Delta T)$
$ \Rightarrow {R_1} + {R_2} = {R_1} + {R_1}{\alpha _1}\Delta T + {R_2} + {R_2}{\alpha _2}\Delta T$
$ \Rightarrow {R_1}{\alpha _1}\Delta T = - {R_2}{\alpha _2}\Delta T$
On substituting the values
${R_1}(4.5 \times {10^{ - 3}}^\circ {C^{ - 1}})\Delta T = - {R_2}( - 5 \times {10^{ - 2}}^\circ {C^{ - 1}})\Delta T$
It is given in the question that ${R_1} = 100\Omega $
$ \Rightarrow 100(4.5 \times {10^{ - 3}}) = {R_2}(5 \times {10^{ - 2}})$
$ \Rightarrow {R_2} = \dfrac{{100(4.5 \times {{10}^{ - 3}})}}{{5 \times {{10}^{ - 2}}}}$
On solving further,
${R_2} = 9\Omega $
Hence the correct answer to the question is (A) $9\Omega $
Note
Semiconductors are the material whose resistivity lies between the range of electric conductors and electric insulators. Thus they share common traits with both electric conductors and electric insulators. The negative temperature coefficient represents that the material is a semiconductor as its resistance decreases on increase in temperature.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main